cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 110 results. Next

A246076 Paradigm shift sequence for the (-2,5) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 40, 44, 48, 52, 56, 60, 66, 72, 80, 88, 96, 104, 112, 120, 132, 144, 160, 176, 192, 208, 224, 240, 264, 288, 320, 352, 384, 416, 448, 480, 528, 576, 640, 704, 768, 832, 896, 960, 1056, 1152, 1280, 1408, 1536, 1664, 1792
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=-2 steps), or implement the current bundled action (which requires q=5 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 2.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=5: A103969, A246074, A246075, A246076, A246079, A246083, A246087, A246091, A246095, A246099, A246103.
Paradigm shift sequences with p<0: A103969, A246074, A246075, A246076, A246079, A029750, A246078, A029747, A246077, A029744, A029747, A131577.

Programs

  • PARI
    Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +7*x^8 +6*x^9 +5*x^10 +4*x^11 +3*x^12 +2*x^13 +x^14 +x^23) / (1 -2*x^8) + O(x^100)) \\ Colin Barker, Nov 18 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 2*a(n-8) for all n >= 25.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +7*x^8 +6*x^9 +5*x^10 +4*x^11 +3*x^12 +2*x^13 +x^14 +x^23) / (1 -2*x^8). - Colin Barker, Nov 18 2016

A246078 Paradigm shift sequence for (-1,4) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 40, 44, 48, 54, 60, 66, 72, 81, 90, 99, 108, 120, 132, 144, 162, 180, 198, 216, 243, 270, 297, 324, 360, 396, 432, 486, 540, 594, 648, 729, 810, 891, 972, 1080, 1188, 1296, 1458, 1620, 1782, 1944, 2187, 2430, 2673, 2916, 3240, 3564, 3888, 4374
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=-1 steps), or implement the current bundled action (which requires q=4 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 3.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.
5. For large n, the sequence is recursively defined.

Crossrefs

Paradigm shift sequences with q=4: A029750, A103969, A246074, A246078, A246082, A246086, A246090, A246094, A246098, A246102.
Paradigm shift sequences with p<0: A103969, A246074, A246075, A246076, A246079, A029750, A246078, A029747, A246077, A029744, A029747, A131577.

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6 + 8 x^7 + 9 x^8 + 10 x^9 + 11 x^10 + 9 x^11 + 7 x^12 + 5 x^13 + 4 x^14 + 3 x^15 + 2 x^16 + x^17 + x^23 + 2 x^24)/(1 - 3 x^11), {x, 0, 71}], x] (* Michael De Vlieger, Nov 18 2016 *)
  • PARI
    Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +9*x^11 +7*x^12 +5*x^13 +4*x^14 +3*x^15 +2*x^16 +x^17 +x^23 +2*x^24) / (1 -3*x^11) + O(x^100)) \\ Colin Barker, Nov 18 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 3*a(n-11) for all n >= 26.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +9*x^11 +7*x^12 +5*x^13 +4*x^14 +3*x^15 +2*x^16 +x^17 +x^23 +2*x^24) / (1 -3*x^11). - Colin Barker, Nov 18 2016

A246077 Paradigm shift sequence for (-1,-3) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 21, 24, 28, 32, 36, 42, 48, 56, 64, 72, 84, 96, 112, 128, 144, 168, 192, 224, 256, 288, 336, 384, 448, 512, 576, 672, 768, 896, 1024, 1152, 1344, 1536, 1792, 2048, 2304, 2688, 3072, 3584, 4096, 4608, 5376, 6144, 7168, 8192, 9216
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=-1 steps), or implement the current bundled action (which requires q=3 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 2.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Programs

  • PARI
    Vec(x*(1 +x^2) * (1 +2*x +2*x^2 +2*x^3 +3*x^4 +2*x^5 +x^8-x^10 +x^12) / (1 -2*x^5) + O(x^100)) \\ Colin Barker, Nov 19 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 2*a(n-5) for all n >= 16.
G.f.: x*(1 +x^2) * (1 +2*x +2*x^2 +2*x^3 +3*x^4 +2*x^5 +x^8-x^10 +x^12) / (1 -2*x^5). - Colin Barker, Nov 19 2016

A246352 Numbers n such that A048673(n) >= n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 56, 57, 60, 63, 64, 66, 68, 69, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 91, 92, 93, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Crossrefs

Complement: A246351
Union of A246282 and A048674.
Subsequence: A029744 (gives the positions of records in A048673).
Cf. A246372.

Programs

  • PARI
    default(primelimit, 2^22);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    isA246352(n) = (A048673(n) >= n);
    n = 0; i = 0; while(i < 10000, n++; if(isA246352(n), i++; write("b246352.txt", i, " ", n)));
    (Scheme, with Antti Karttunen's IntSeq-library)
    (define A246352 (MATCHING-POS 1 1 (lambda (n) (>= (A048673 n) n))))

A048985 Working in base 2, replace n with the concatenation of its prime divisors in increasing order (write answer in base 10).

Original entry on oeis.org

1, 2, 3, 10, 5, 11, 7, 42, 15, 21, 11, 43, 13, 23, 29, 170, 17, 47, 19, 85, 31, 43, 23, 171, 45, 45, 63, 87, 29, 93, 31, 682, 59, 81, 47, 175, 37, 83, 61, 341, 41, 95, 43, 171, 125, 87, 47, 683, 63, 173, 113, 173, 53, 191, 91, 343, 115, 93, 59, 349, 61, 95, 127, 2730
Offset: 1

Views

Author

Keywords

Examples

			15 = 3*5 -> 11.101 -> 11101 = 29, so a(15) = 29.
		

Crossrefs

Cf. A193652, A029744 (record values and where they occur).
Cf. A027746.

Programs

  • Haskell
    -- import Data.List (unfoldr)
    a048985 = foldr (\d v -> 2 * v + d) 0 . concatMap
       (unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2))
       . reverse . a027746_row
    -- Reinhard Zumkeller, Jul 16 2012
    
  • Mathematica
    f[n_] := FromDigits[ Flatten[ IntegerDigits[ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger@n], 2]], 2]; Array[f, 64] (* Robert G. Wilson v, Jun 02 2010 *)
  • Python
    from sympy import factorint
    def a(n):
        if n == 1: return 1
        return int("".join(bin(p)[2:]*e for p, e in factorint(n).items()), 2)
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Oct 07 2022

Extensions

More terms from Sam Alexander (pink2001x(AT)hotmail.com) and Michel ten Voorde

A246360 a(1) = 1, then A007051 ((3^n)+1)/2 interleaved with A057198 (5*3^(n-1)+1)/2.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 23, 41, 68, 122, 203, 365, 608, 1094, 1823, 3281, 5468, 9842, 16403, 29525, 49208, 88574, 147623, 265721, 442868, 797162, 1328603, 2391485, 3985808, 7174454, 11957423, 21523361, 35872268, 64570082, 107616803, 193710245, 322850408, 581130734
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Also record values in A048673.

Crossrefs

Even bisection: A007051 from A007051(1) onward: [2, 5, 14, 41, ...]
Odd bisection: 1 followed by A057198.
A029744 gives the corresponding record positions in A048673.
A247284 gives the maximum values of A048673 between these records and A247283 gives the positions where they occur.
Subsequence of A246361.

Programs

  • Mathematica
    LinearRecurrence[{1, 3, -3}, {1, 2, 3, 5}, 40] (* Hugo Pfoertner, Sep 27 2022 *)
  • Python
    def A246360(n): return 1 if n==1 else (3+((n&1)<<1))*3**((n>>1)-1)+1>>1 # Chai Wah Wu, Sep 02 2025
  • Scheme
    (define (A246360 n) (cond ((<= n 1) n) ((even? n) (/ (+ 1 (A000244 (/ n 2))) 2)) (else (/ (+ 1 (* 5 (A000244 (/ (- n 3) 2)))) 2))))
    

Formula

a(1) = 1, a(2n) = (3^n+1)/2, a(2n+1) = (5 * 3^(n-1)+1)/2.
a(n) = A048673(A029744(n)).
a(n) = A087503(n-3) + 2 for n >= 3. - Peter Kagey, Nov 30 2019
G.f.: x -x^2*(-2-x+4*x^2) / ( (x-1)*(3*x^2-1) ). - R. J. Mathar, Sep 23 2014

A063759 Spherical growth series for modular group.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152
Offset: 0

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

Comments

Also number of sequences S of length n with entries in {1,..,q} where q = 3, satisfying the condition that adjacent terms differ in absolute value by exactly 1, see examples. - W. Edwin Clark, Oct 17 2008

Examples

			For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - _W. Edwin Clark_, Oct 17 2008
From _Joerg Arndt_, Nov 23 2012: (Start)
There are a(6) = 16 such words of length 6:
[ 1]   [ 1 2 1 2 1 2 ]
[ 2]   [ 1 2 1 2 3 2 ]
[ 3]   [ 1 2 3 2 1 2 ]
[ 4]   [ 1 2 3 2 3 2 ]
[ 5]   [ 2 1 2 1 2 1 ]
[ 6]   [ 2 1 2 1 2 3 ]
[ 7]   [ 2 1 2 3 2 1 ]
[ 8]   [ 2 1 2 3 2 3 ]
[ 9]   [ 2 3 2 1 2 1 ]
[10]   [ 2 3 2 1 2 3 ]
[11]   [ 2 3 2 3 2 1 ]
[12]   [ 2 3 2 3 2 3 ]
[13]   [ 3 2 1 2 1 2 ]
[14]   [ 3 2 1 2 3 2 ]
[15]   [ 3 2 3 2 1 2 ]
[16]   [ 3 2 3 2 3 2 ]
(End)
		

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.

Crossrefs

The sequence (ternary strings) seems to be related to A029744 and A090989.

Programs

  • Haskell
    import Data.List (transpose)
    a063759 n = a063759_list !! n
    a063759_list = concat $ transpose [a151821_list, a007283_list]
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Mathematica
    CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2),{x,0,40}],x](* Jean-François Alcover, Mar 21 2011 *)
    Join[{1},Transpose[NestList[{Last[#],2First[#]}&,{3,4},40]][[1]]] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    a(n)=([0,1; 2,0]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Feb 09 2017

Formula

G.f.: (1+3*x+2*x^2)/(1-2*x^2).
a(n) = 2*a(n-2), n>2. - Harvey P. Dale, Oct 22 2011
a(2*n) = A151821(n+1); a(2*n+1) = A007283(n). - Reinhard Zumkeller, Dec 16 2013

Extensions

Information from A145751 included by Joerg Arndt, Dec 03 2012

A246080 Paradigm shift sequence for (0,2) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 18, 21, 24, 30, 36, 45, 54, 63, 72, 90, 108, 135, 162, 189, 216, 270, 324, 405, 486, 567, 648, 810, 972, 1215, 1458, 1701, 1944, 2430, 2916, 3645, 4374, 5103, 5832, 7290, 8748, 10935, 13122, 15309, 17496, 21870, 26244
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=0 steps), or implement the current bundled action (which requires q=2 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 3.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=2: A029744, A029747, A246080, A246084, A246088, A246092, A246096, A246100.
Paradigm shift sequences with p=0: A000792, A246080, A246081, A246082, A246083.

Programs

  • PARI
    Vec(x*(1+x)^2 * (1+2*x^2+3*x^4+x^6) / (1-3*x^6) + O(x^100)) \\ Colin Barker, Nov 19 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor (Q/(C+1) ).
a(n) = 3*a(n-6) for all n >= 10.
G.f.: x*(1+x)^2 * (1+2*x^2+3*x^4+x^6) / (1-3*x^6). - Colin Barker, Nov 19 2016

A246084 Paradigm shift sequence for (1,2) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 18, 21, 24, 28, 32, 36, 45, 54, 63, 72, 84, 96, 112, 135, 162, 189, 216, 252, 288, 336, 405, 486, 567, 648, 756, 864, 1008, 1215, 1458, 1701, 1944, 2268, 2592, 3024, 3645, 4374, 5103, 5832, 6804, 7776, 9072, 10935, 13122, 15309, 17496, 20412, 23328, 27216, 32805, 39366, 45927
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=1 steps), or implement the current bundled action (which requires q=2 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 3.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.
5. For large n, the sequence is recursively defined.

Crossrefs

Paradigm shift sequences with q=2: A029744, A029747, A246080, A246084, A246088, A246092, A246096, A246100.
Paradigm shift sequences with p=1: A178715, A246084, A246085, A246086, A246087.

Programs

  • PARI
    Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +5*x^7 +3*x^8 +x^9 +x^15 +2*x^16 +4*x^24) / (1 -3*x^7) + O(x^100)) \\ Colin Barker, Nov 19 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor (Q/(C+1) ).
a(n) = 3*a(n-7) for all n >= 26.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +5*x^7 +3*x^8 +x^9 +x^15 +2*x^16 +4*x^24) / (1 -3*x^7). - Colin Barker, Nov 19 2016

A246092 Paradigm shift sequence for (3,2) production scheme with replacement.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 63, 72, 84, 96, 112, 128, 144, 160, 180, 200, 225, 252, 288, 336, 384, 448, 512, 576, 640, 720, 800, 900, 1008, 1152, 1344, 1536, 1792, 2048, 2304, 2560, 2880, 3200, 3600, 4032, 4608, 5376, 6144, 7168, 8192, 9216, 10240, 11520, 12800, 14400, 16128, 18432, 21504, 24576, 28672
Offset: 1

Views

Author

Jonathan T. Rowell, Aug 13 2014

Keywords

Comments

This sequence is the solution to the following problem: "Suppose you have the choice of using one of three production options: apply a simple incremental action, bundle existing output as an integrated product (which requires p=3 steps), or implement the current bundled action (which requires q=2 steps). The first use of a novel bundle erases (or makes obsolete) all prior actions. How large an output can be generated in n time steps?"
1. A production scheme with replacement R(p,q) eliminates existing output following a bundling action, while an additive scheme A(p,q) retains the output. The schemes correspond according to A(p,q)=R(p-q,q), with the replacement scheme serving as the default presentation.
2. This problem is structurally similar to the Copy and Paste Keyboard problem: Existing sequences (A178715 and A193286) should be regarded as Paradigm-Shift Sequences with production schemes R(1,1) and R(2,1) with replacement, respectively.
3. The ideal number of implementations per bundle, as measured by the geometric growth rate (p+zq root of z), is z = 4.
4. All solutions will be of the form a(n) = (qm+r) * m^b * (m+1)^d.

Crossrefs

Paradigm shift sequences with q=2: A029744, A029747, A246080, A246084, A246088, A246092, A246096, A246100.
Paradigm shift sequences with p=3: A193455, A246092, A246093, A246094, A246095.

Programs

  • PARI
    Vec(x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +8*x^11 +5*x^12 +3*x^13 +2*x^14 +x^15 +x^21 +2*x^22 +3*x^23 +3*x^24 +5*x^34) / (1 -4*x^11) + O(x^100)) \\ Colin Barker, Nov 19 2016

Formula

a(n) = (qd+r) * d^(C-R) * (d+1)^R, where r = (n-Cp) mod q, Q = floor( (R-Cp)/q ), R = Q mod (C+1), and d = floor ( Q/(C+1) ).
a(n) = 4*a(n-11) for all n >= 36.
G.f.: x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +8*x^11 +5*x^12 +3*x^13 +2*x^14 +x^15 +x^21 +2*x^22 +3*x^23 +3*x^24 +5*x^34) / (1 -4*x^11). - Colin Barker, Nov 19 2016
Previous Showing 41-50 of 110 results. Next