cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 314 results. Next

A367912 Number of multisets that can be obtained by choosing a binary index of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 3, 3, 3, 3, 5, 5, 5, 5, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
The run-lengths are all 4 or 8.

Examples

			The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with multiset choices {1,1,2}, {1,1,3}, {1,2,2}, {1,2,3}, {1,3,3}, {2,2,3}, {2,3,3}, so a(52) = 7.
		

Crossrefs

Positions of ones are A253317.
The version for multisets and divisors is A355733, for sequences A355731.
The version for multisets is A355744, for sequences A355741.
For a sequence of distinct choices we have A367905, firsts A367910.
Positions of first appearances are A367913, sorted A367915.
Choosing a sequence instead of multiset gives A368109, firsts A368111.
Choosing a set instead of multiset gives A368183, firsts A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n,0,100}]

A293697 a(n) is the sum of prime numbers between 2^n+1 and 2^(n+1).

Original entry on oeis.org

2, 3, 12, 24, 119, 341, 1219, 4361, 16467, 57641, 208987, 780915, 2838550, 10676000, 39472122, 148231324, 559305605, 2106222351, 7995067942, 30299372141, 115430379568, 440354051430, 1683364991290, 6448757014608, 24754017328490, 95132828618112, 366232755206338
Offset: 0

Views

Author

Olivier Gérard, Oct 15 2017

Keywords

Examples

			From _Gus Wiseman_, Jun 02 2024: (Start)
Row-sums of:
   2
   3
   5   7
  11  13
  17  19  23  29  31
  37  41  43  47  53  59  61
  67  71  73  79  83  89  97 101 103 107 109 113 127
(End)
		

Crossrefs

Cf. A036378 (number of primes summed).
Cf. A293696 (triangle of partial sums).
Minimum is A014210 or A104080, indices A372684.
Maximum is A014234, delta A013603.
Counting all numbers (not just prime) gives A049775.
For squarefree instead of prime numbers we have A373123, length A077643.
For prime indices we have A373124.
Partial sums give A130739(n+1).

Programs

  • Mathematica
    Table[Plus @@
      Table[Prime[i], {i, PrimePi[2^(n)] + 1, PrimePi[2^(n + 1)]}], {n, 0,
       24}]

A359400 Sum of positions of zeros in the reversed binary expansion of n, where positions in a sequence are read starting with 1 from the left.

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 1, 0, 6, 5, 4, 3, 3, 2, 1, 0, 10, 9, 8, 7, 7, 6, 5, 4, 6, 5, 4, 3, 3, 2, 1, 0, 15, 14, 13, 12, 12, 11, 10, 9, 11, 10, 9, 8, 8, 7, 6, 5, 10, 9, 8, 7, 7, 6, 5, 4, 6, 5, 4, 3, 3, 2, 1, 0, 21, 20, 19, 18, 18, 17, 16, 15, 17, 16, 15, 14, 14, 13
Offset: 0

Views

Author

Gus Wiseman, Jan 05 2023

Keywords

Examples

			The reversed binary expansion of 100 is (0,0,1,0,0,1,1), with zeros at positions {1,2,4,5}, so a(100) = 12.
		

Crossrefs

The number of zeros is A023416, partial sums A059015.
Row sums of A368494.
For positions of 1's we have A029931, non-reversed A230877.
The non-reversed version is A359359.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reverse A030308.
A039004 lists the positions of zeros in A345927.

Programs

  • C
    long A359400(long n) {
      long result = 0, counter = 1;
      do {
        if (n % 2 == 0)
          result += counter;
        counter++;
        n /= 2;
      } while (n > 0);
      return result; } // Frank Hollstein, Jan 06 2023
    
  • Mathematica
    Table[Total[Join@@Position[Reverse[IntegerDigits[n,2]],0]],{n,0,100}]
  • Python
    def a(n): return sum(i for i, bi in enumerate(bin(n)[:1:-1], 1) if bi=='0')
    print([a(n) for n in range(78)]) # Michael S. Branicky, Jan 09 2023

Formula

a(n) = binomial(A029837(n)+1, 2) - A029931(n), for n>0.

A087117 Number of zeros in the longest string of consecutive zeros in the binary representation of n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 1, 0, 3, 2, 1, 1, 2, 1, 1, 0, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 5, 4, 3, 3, 2, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 0, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 4, 3, 3, 2, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 14 2003

Keywords

Comments

The following four statements are equivalent: a(n) = 0; n = 2^k - 1 for some k > 0; A087116(n) = 0; A023416(n) = 0.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. Then a(k) is the maximum part of this composition, minus one. The maximum part is A333766(k). - Gus Wiseman, Apr 09 2020

Crossrefs

Positions of zeros are A000225.
Positions of terms <= 1 are A003754.
Positions of terms > 0 are A062289.
Positions of first appearances are A131577.
The version for prime indices is A252735.
The proper maximum is A333766.
The version for minimum is A333767.
Maximum prime index is A061395.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Haskell
    import Data.List (unfoldr, group)
    a087117 0       = 1
    a087117 n
      | null $ zs n = 0
      | otherwise   = maximum $ map length $ zs n where
      zs = filter ((== 0) . head) . group .
           unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)
    -- Reinhard Zumkeller, May 01 2012
    
  • Maple
    A087117 := proc(n)
        local d,l,zlen ;
        if n = 0 then
            return 1 ;
        end if;
        d := convert(n,base,2) ;
        for l from nops(d)-1 to 0 by -1 do
            zlen := [seq(0,i=1..l)] ;
            if verify(zlen,d,'sublist') then
                return l ;
            end if;
        end do:
        return 0 ;
    end proc; # R. J. Mathar, Nov 05 2012
  • Mathematica
    nz[n_]:=Max[Length/@Select[Split[IntegerDigits[n,2]],MemberQ[#,0]&]]; Array[nz,110,0]/.-\[Infinity]->0 (* Harvey P. Dale, Sep 05 2017 *)
  • PARI
    h(n)=if(n<2, return(0)); my(k=valuation(n,2)); if(k, max(h(n>>k), k), n++; n>>=valuation(n,2); h(n-1))
    a(n)=if(n,h(n),1) \\ Charles R Greathouse IV, Apr 06 2022

Formula

a(n) = max(A007814(n), a(A025480(n-1))) for n >= 2. - Robert Israel, Feb 19 2017
a(2n+1) = a(n) (n>=1); indeed, the binary form of 2n+1 consists of the binary form of n with an additional 1 at the end - Emeric Deutsch, Aug 18 2017
For n > 0, a(n) = A333766(n) - 1. - Gus Wiseman, Apr 09 2020

A125106 Enumeration of partitions by binary representation: each 1 is a part; the part size is 1 more than the number of 0's in the rest of the number.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 4, 3, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 5, 4, 1, 4, 2, 3, 1, 1, 4, 3, 3, 2, 1, 3, 2, 2, 2, 1, 1, 1, 4, 4, 3, 3, 1, 3, 3, 2, 2, 2, 1, 1, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Alford Arnold, Dec 10 2006

Keywords

Comments

Another way to describe this: starting with the binary representation and a counter set at one, count the 0's from right to left. Write a term equal to the counter for each "1" encountered.
A101211 is a similar sequence, with A005811 elements per row which maps natural numbers to compositions (ordered partitions).
There are two ways to consider this as a table: taking each partition as a row, or taking the partitions generated by 2^(n-1) through 2^n-1 as a row.
Taking the n-th row as multiple partitions, it consists of those partitions with the first hook size (largest part plus number of parts minus 1) equal to n. The number of integers in this n-th row is A001792(n-1), and the row sum is A049611.
Taking each partition as a separate row, the row lengths are A000120, and the row sums are A161511.
Heinz numbers of the rows are A005940. - Gus Wiseman, Jan 17 2023

Examples

			Row 4:
1000 [4]
1001 [3,1]
1010 [3,2]
1011 [2,1,1]
1100 [3,3]
1101 [2,2,1]
1110 [2,2,2]
1111 [1,1,1,1]
		

Crossrefs

Each partition as row: A000120 (row widths), A161511 (row sums), A243499 (row products).
Lasts are A001511.
Firsts are A008687.

Programs

  • Maple
    b:= proc(n) local c, l, m; l:=[][]; m:= n; c:=1;
          while m>0 do if irem(m, 2, 'm')=0 then c:= c+1
             else l:= c, l fi
          od; l
        end:
    T:= n-> seq(b(i), i=2^(n-1)..2^n-1):
    seq(T(n), n=1..7);  # Alois P. Heinz, Sep 25 2015
  • Mathematica
    f[k_] := (bits = IntegerDigits[k, 2]; zerosCount = Reverse[ Accumulate[ 1-Reverse[bits] ] ] + 1; Select[ Transpose[ {bits, zerosCount} ], First[#] == 1 & ][[All, 2]]); row[n_] := Table[ f[k], {k, 2^(n-1), 2^n-1}]; Flatten[ Table[ row[n], {n, 1, 5}]] (* Jean-François Alcover, Jan 24 2012 *)
    scc[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Reverse[scc[n]-Range[Length[scc[n]]]+1],{n,0,20}] (* Gus Wiseman, Jan 17 2023 *)

Formula

Partition 2n is partition n with every part size increased by 1; partition 2n+1 is partition n with an additional part of size 1.
T(n,k) = A272020(n,k) - A000120(n) + k. - Gus Wiseman, Jan 17 2023

Extensions

Edited by Franklin T. Adams-Watters, Jun 11 2009

A242628 Irregular table enumerating partitions; n-th row has partitions in previous row with each part incremented, followed by partitions in previous row with an additional part of size 1.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 2, 2, 1, 1, 1, 1, 4, 3, 3, 3, 2, 2, 2, 2, 3, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 5, 4, 4, 4, 3, 3, 3, 3, 4, 2, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 4, 1, 3, 3, 1, 3, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 5, 5, 4, 4, 4, 4, 5, 3, 4, 4, 3, 4, 3, 3, 3, 3, 3, 3, 5, 2
Offset: 1

Views

Author

Keywords

Comments

This can be calculated using the binary expansion of n; see the PARI program.
The n-th row consists of all partitions with hook size (maximum + number of parts - 1) equal to n.
The partitions in row n of this sequence are the conjugates of the partitions in row n of A125106 taken in reverse order.
Row n is also the reversed partial sums plus one of the n-th composition in standard order (A066099) minus one. - Gus Wiseman, Nov 07 2022

Examples

			The table starts:
  1;
  2; 1,1;
  3; 2,2; 2,1; 1,1,1;
  4; 3,3; 3,2; 2,2,2; 3,1 2,2,1 2,1,1 1,1,1,1;
  ...
		

Crossrefs

Cf. A241596 (another version of this list of partitions), A125106, A240837, A112531, A241597 (compositions).
For other schemes to list integer partitions, please see for example A227739, A112798, A241918, A114994.
First element in each row is A008687.
Last element in each row is A065120.
Heinz numbers of rows are A253565.
Another version is A358134.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, [[1]],
          [map(x-> map(y-> y+1, x), b(n-1))[],
           map(x-> [x[], 1], b(n-1))[]])
        end:
    T:= n-> map(x-> x[], b(n))[]:
    seq(T(n), n=1..7);  # Alois P. Heinz, Sep 25 2015
  • Mathematica
    T[1] = {{1}};
    T[n_] := T[n] = Join[T[n-1]+1, Append[#, 1]& /@ T[n-1]];
    Array[T, 7] // Flatten (* Jean-François Alcover, Jan 25 2021 *)
  • PARI
    apart(n) = local(r=[1]); while(n>1,if(n%2==0,for(k=1,#r,r[k]++),r=concat(r,[1]));n\=2);r \\ Generates n-th partition.

A326703 BII-numbers of chains of nonempty sets.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 16, 17, 24, 32, 34, 40, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 256, 257, 384, 512, 514, 640, 1024, 1025, 1026, 1028, 1029, 1030, 1152, 1280, 1281, 1408, 1536, 1538, 1664, 2048, 2056, 2176, 4096, 4097, 4104, 4112, 4113, 4120
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, it follows that the BII-number of {{2},{1,3}} is 18.
Elements of a set-system are sometimes called edges. In a chain of sets, every edge is a subset or superset of every other edge.

Examples

			The sequence of all chains of nonempty sets together with their BII-numbers begins:
    0: {}
    1: {{1}}
    2: {{2}}
    4: {{1,2}}
    5: {{1},{1,2}}
    6: {{2},{1,2}}
    8: {{3}}
   16: {{1,3}}
   17: {{1},{1,3}}
   24: {{3},{1,3}}
   32: {{2,3}}
   34: {{2},{2,3}}
   40: {{3},{2,3}}
   64: {{1,2,3}}
   65: {{1},{1,2,3}}
   66: {{2},{1,2,3}}
   68: {{1,2},{1,2,3}}
   69: {{1},{1,2},{1,2,3}}
   70: {{2},{1,2},{1,2,3}}
   72: {{3},{1,2,3}}
   80: {{1,3},{1,2,3}}
   81: {{1},{1,3},{1,2,3}}
   88: {{3},{1,3},{1,2,3}}
   96: {{2,3},{1,2,3}}
   98: {{2},{2,3},{1,2,3}}
		

Crossrefs

Chains of nonempty sets are counted by A000629.
MM-numbers of chains of multisets are A318991.
BII-numbers of antichains of nonempty sets are A326704.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Select[Range[0,100],stableQ[bpe/@bpe[#],!SubsetQ[#1,#2]&&!SubsetQ[#2,#1]&]&]
  • Python
    from itertools import chain, count, combinations, islice
    from sympy.combinatorics.subsets import ksubsets
    def subsets(x):
        for i in range(1,len(x)):
            for j in ksubsets(x,i):
                yield(list(j))
    def a_gen(): #generator of terms
        yield 0
        for n in count(1):
            t,v,j = [[]],[],0
            for i in chain.from_iterable(combinations(range(1, n+1), r) for r in range(n+1)):
                if n in i:
                    t[j].append([list(i)])
            while n:
                t.append([])
                for i in t[j]:
                    if len(i[-1]) > 1:
                        for k in list(subsets(i[-1])):
                            t[j+1].append(i.copy()+[k])
                if len(t[j+1]) < 1:
                    break
                j += 1
            for j in chain.from_iterable(t):
                v.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j))
            yield from sorted(v)
    A326703_list = list(islice(a_gen(), 55)) # John Tyler Rascoe, Jun 07 2024

A327041 a(n) is the number whose binary indices are the union of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 2, 3, 3, 3, 3, 3, 4, 5, 6, 7, 7, 7, 7, 7, 5, 5, 7, 7, 7, 7, 7, 7, 5, 5, 7, 7, 7, 7, 7, 7, 6, 7, 6, 7, 7, 7, 7, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Gus Wiseman, Aug 19 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.

Examples

			22 is the BII-number of {{2},{1,2},{1,3}}, and 7 has binary indices {1,2,3}, so a(22) = 7.
		

Crossrefs

Indices of records are A253317.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Total[2^Union@@bpe/@bpe[n]]/2,{n,0,100}]

A370637 Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.

Original entry on oeis.org

0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 0 through a(5) = 8 subsets:
  .  .  .  {1,2,3}  {1,2,3}    {1,2,3}
                    {1,2,3,4}  {1,4,5}
                               {1,2,3,4}
                               {1,2,3,5}
                               {1,2,4,5}
                               {1,3,4,5}
                               {2,3,4,5}
                               {1,2,3,4,5}
		

Crossrefs

Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370582, differences A370586.
For prime indices we have A370583, differences A370587.
First differences are A370589.
The complement is counted by A370636, differences A370639.
The case without ones is A370643.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The minimal case is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]=={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367903(n).
Partial sums of A370589.

Extensions

a(21)-a(34) from Alois P. Heinz, Mar 09 2024

A372427 Numbers whose binary indices and prime indices have the same sum.

Original entry on oeis.org

19, 33, 34, 69, 74, 82, 130, 133, 305, 412, 428, 436, 533, 721, 755, 808, 917, 978, 1036, 1058, 1062, 1121, 1133, 1143, 1341, 1356, 1630, 1639, 1784, 1807, 1837, 1990, 2057, 2115, 2130, 2133, 2163, 2260, 2324, 2328, 2354, 2358, 2512, 2534, 2627, 2771, 2825
Offset: 1

Views

Author

Gus Wiseman, May 01 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The binary indices of 130 are {2,8}, and the prime indices are {1,3,6}. Both sum to 10, so 130 is in the sequence.
The terms together with their prime indices begin:
   19: {8}
   33: {2,5}
   34: {1,7}
   69: {2,9}
   74: {1,12}
   82: {1,13}
  130: {1,3,6}
  133: {4,8}
  305: {3,18}
  412: {1,1,27}
  428: {1,1,28}
The terms together with their binary expansions and binary indices begin:
   19:      10011 ~ {1,2,5}
   33:     100001 ~ {1,6}
   34:     100010 ~ {2,6}
   69:    1000101 ~ {1,3,7}
   74:    1001010 ~ {2,4,7}
   82:    1010010 ~ {2,5,7}
  130:   10000010 ~ {2,8}
  133:   10000101 ~ {1,3,8}
  305:  100110001 ~ {1,5,6,9}
  412:  110011100 ~ {3,4,5,8,9}
  428:  110101100 ~ {3,4,6,8,9}
		

Crossrefs

For length instead of sum we get A071814.
Positions of zeros in A372428.
For maximum instead of sum we have A372436.
A003963 gives product of prime indices.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],Total[prix[#]]==Total[bix[#]]&]
Previous Showing 81-90 of 314 results. Next