cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A342534 a(n) = Sum_{k=1..n} phi(gcd(k, n))^2.

Original entry on oeis.org

1, 2, 6, 7, 20, 12, 42, 26, 50, 40, 110, 42, 156, 84, 120, 100, 272, 100, 342, 140, 252, 220, 506, 156, 484, 312, 438, 294, 812, 240, 930, 392, 660, 544, 840, 350, 1332, 684, 936, 520, 1640, 504, 1806, 770, 1000, 1012, 2162, 600, 2022, 968, 1632, 1092, 2756, 876, 2200, 1092, 2052
Offset: 1

Views

Author

Seiichi Manyama, Mar 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^2 &]; Array[a, 50] (* Amiram Eldar, Mar 15 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(gcd(k, n))^2);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^2);

Formula

a(n) = Sum_{d|n} phi(n/d) * phi(d)^2.
a(n) = Sum_{k=1..n} phi(gcd(k,n))*phi(n/gcd(k,n)). - Richard L. Ollerton, May 10 2021
From Amiram Eldar, Nov 15 2022: (Start)
Multiplicative with a(p^e) = (p-1)*(p^(e-2) - p^(2*e-3) + p^(2*e-1)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)/(3*zeta(3)) * Product_{p prime} (1 - (2*p-1)/p^3) = A306633 * A065464 / 3 = 0.195343... . (End)

A342535 a(n) = Sum_{k=1..n} phi(gcd(k, n))^3.

Original entry on oeis.org

1, 2, 10, 11, 68, 20, 222, 78, 238, 136, 1010, 110, 1740, 444, 680, 604, 4112, 476, 5850, 748, 2220, 2020, 10670, 780, 8276, 3480, 6330, 2442, 21980, 1360, 27030, 4792, 10100, 8224, 15096, 2618, 46692, 11700, 17400, 5304, 64040, 4440, 74130, 11110, 16184, 21340, 97382, 6040
Offset: 1

Views

Author

Seiichi Manyama, Mar 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * EulerPhi[#]^3 &]; Array[a, 50] (* Amiram Eldar, Mar 15 2021 *)
    Table[Sum[EulerPhi[GCD[k,n]]^3,{k,n}],{n,50}] (* Harvey P. Dale, Jul 15 2021 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(gcd(k, n))^3);
    
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*eulerphi(d)^3);

Formula

a(n) = Sum_{d|n} phi(n/d) * phi(d)^3.
a(n) = Sum_{k=1..n} phi(gcd(k,n))*phi(n/gcd(k,n))^2. - Richard L. Ollerton, May 10 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(3)/4) * Product_{p prime} (1 - 3/p^2 + 3/p^3 - 2/p^4 + 3/p^6 - 3/p^7 + 1/p^8) = 0.093622450005... . - Amiram Eldar, Nov 15 2022

A127192 Triangle read by rows: square of A054523.

Original entry on oeis.org

1, 2, 1, 4, 0, 1, 5, 2, 0, 1, 8, 0, 0, 0, 1, 8, 4, 2, 0, 0, 1, 12, 0, 0, 0, 0, 0, 1, 12, 5, 0, 2, 0, 0, 0, 1, 16, 0, 4, 0, 0, 0, 0, 0, 1, 16, 8, 0, 0, 2, 0, 0, 0, 0, 1, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 20, 8, 5, 4, 0, 2, 0, 0, 0, 0, 0, 1, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 07 2007

Keywords

Comments

Row sums = A018804: (1, 3, 5, 8, 9, 15, ...), sum of gcd(k,n) for 1<= k <= n. Left column = A029935: (1, 2, 4, 5, 8, 8, 12, 12, ...). A127192 * d(n) = d(n) * n, or A127192 * A000005 = A038040 = (1, 4, 6, 12, 10, 24, 14, ...).
Column k contains terms of A029935 interspersed with (k-1) zeros.

Examples

			First few rows of the triangle:
   1;
   2, 1;
   4, 0, 1;
   5, 2, 0, 1;
   8, 0, 0, 0, 1;
   8, 4, 2, 0, 0, 1;
  12, 0, 0, 0, 0, 0, 1;
  12, 5, 0, 2, 0, 0, 0, 1;
  16, 0, 4, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Extensions

a(20) ff. corrected and more terms from Georg Fischer, May 31 2023

A159937 Triangle read by rows, A054525 * A127478, as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 2, 1, 0, 2, 4, 0, 0, 0, 4, 2, 2, 2, 0, 0, 2, 6, 0, 0, 0, 0, 0, 6, 4, 2, 0, 2, 0, 0, 0, 4, 6, 0, 4, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 4, 0, 0, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 4, 2, 4, 4, 0, 2, 0, 0, 0, 0, 0, 4
Offset: 1

Views

Author

Gary W. Adamson, Apr 26 2009

Keywords

Comments

Row sums = A029935: (1, 2, 4, 5, 8, 8,...). Right and left borders = A000010, phi(n).

Examples

			First few rows of the triangle =
1;
1, 1;
2, 0, 2;
2, 1, 0, 2;
4, 0, 0, 0, 4;
2, 2, 2, 0, 0, 2;
6, 0, 0, 0, 0, 0, 6;
4, 2, 0, 2, 0, 0, 0, 4;
6, 0, 4, 0, 0, 0, 0, 0, 6;
4, 4, 0, 0, 4, 0, 0, 0, 0, 4;
10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10;
4, 2, 4, 4, 0, 2, 0, 0, 0, 0, 0, 4;
12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12;
6, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 6;
8, 0, 8, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8;
...
		

Crossrefs

Formula

A054525 * A127478 = Mobius transform of triangle A127478.

A332686 a(n) = Sum_{k=1..n} phi(k/gcd(n, k)).

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 13, 18, 21, 23, 33, 33, 47, 49, 51, 67, 81, 76, 103, 97, 103, 119, 151, 135, 163, 173, 185, 189, 243, 185, 279, 280, 265, 299, 291, 291, 397, 379, 369, 371, 491, 381, 543, 491, 455, 553, 651, 539, 653, 610, 643, 683, 831, 689, 743, 753, 801, 887, 1029
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2020

Keywords

Comments

Inverse Moebius transform of A053570.

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[k/GCD[n, k]], {k, 1, n}], {n, 1, 59}]
  • PARI
    a(n) = sum(k=1, n, eulerphi(k/gcd(n, k))); \\ Michel Marcus, Feb 21 2020

Formula

a(n) = Sum_{k=1..n} phi(lcm(n, k)/n).
a(n) = Sum_{d|n} A053570(d).

A333557 a(n) = Sum_{d|n, gcd(d, n/d) = 1} uphi(d) * uphi(n/d), where uphi = unitary totient function (A047994).

Original entry on oeis.org

1, 2, 4, 6, 8, 8, 12, 14, 16, 16, 20, 24, 24, 24, 32, 30, 32, 32, 36, 48, 48, 40, 44, 56, 48, 48, 52, 72, 56, 64, 60, 62, 80, 64, 96, 96, 72, 72, 96, 112, 80, 96, 84, 120, 128, 88, 92, 120, 96, 96, 128, 144, 104, 104, 160, 168, 144, 112, 116, 192, 120, 120, 192, 126, 192, 160, 132, 192, 176, 192
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[If[GCD[d, n/d] == 1, uphi[d] uphi[n/d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    Table[Sum[If[GCD[d, n/d] == 1, (-2)^PrimeNu[n/d] 2^PrimeNu[d] d, 0], {d, Divisors[n]}], {n, 1, 70}]
    f[p_, e_] := 2*(p^e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (gcd(d, n/d) == 1, (-2)^omega(n/d)*2^omega(d)*d)); \\ Michel Marcus, Mar 27 2020

Formula

If n = Product (p_j^k_j) then a(n) = Product (2 * (p_j^k_j - 1)).
a(n) = 2^omega(n) * uphi(n).
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-2)^omega(n/d) * 2^omega(d) * d.
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * A145388(d).

A341772 a(n) = Sum_{d|n} phi(d) * J_2(n/d).

Original entry on oeis.org

1, 4, 10, 17, 28, 40, 54, 70, 94, 112, 130, 170, 180, 216, 280, 284, 304, 376, 378, 476, 540, 520, 550, 700, 716, 720, 858, 918, 868, 1120, 990, 1144, 1300, 1216, 1512, 1598, 1404, 1512, 1800, 1960, 1720, 2160, 1890, 2210, 2632, 2200, 2254, 2840, 2682, 2864, 3040, 3060, 2860, 3432, 3640
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 19 2021

Keywords

Comments

Dirichlet convolution of Euler totient function phi (A000010) with Jordan function J_2 (A007434).

Crossrefs

Programs

  • Mathematica
    Jordan2[n_] := Sum[MoebiusMu[n/d] d^2, {d, Divisors[n]}]; a[n_] := Sum[EulerPhi[d] Jordan2[n/d], {d, Divisors[n]}]; Table[a[n], {n, 55}]
    f[p_, e_] := p^(e-3)*(p-1)*(p^e*(p+1)^2-p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 31 2024 *)
  • PARI
    J2(n) = sumdiv(n, d, d^2 * moebius(n/d)); \\ A007434
    a(n) = sumdiv(n, d, eulerphi(d) * J2(n/d)); \\ Michel Marcus, Feb 20 2021

Formula

Dirichlet g.f.: zeta(s-1) * zeta(s-2) / zeta(s)^2.
a(n) = Sum_{k=1..n} J_2(gcd(n,k)).
a(n) = Sum_{d|n} psi(d) * phi(d) * phi(n/d).
a(n) = Sum_{d|n} d * phi(d) * A029935(n/d).
a(n) = Sum_{d|n} d * sigma(d) * A007427(n/d).
a(n) = Sum_{d|n} d * A321322(n/d).
a(n) = Sum_{d|n} d * A023900(d) * A338164(n/d).
a(n) = Sum_{d|n} d^2 * A007431(n/d).
a(n) = Sum_{d|n} mu(n/d) * A069097(d).
Sum_{k=1..n} a(k) ~ Pi^2 * n^3 / (18*zeta(3)^2). - Vaclav Kotesovec, Feb 20 2021
a(n) = Sum_{k=1..n} J_2(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
a(n) = Sum_{1 <= i, j <= n} phi(gcd(i, j, n)). - Peter Bala, Jan 21 2024
Multiplicative with a(p^e) = p^(e-3)*(p-1)*(p^e*(p+1)^2-p). - Amiram Eldar, May 31 2024

A344683 Dirichlet convolution of the Euler totient function with itself, applied twice.

Original entry on oeis.org

1, 3, 6, 9, 12, 18, 18, 25, 30, 36, 30, 54, 36, 54, 72, 66, 48, 90, 54, 108, 108, 90, 66, 150, 108, 108, 134, 162, 84, 216, 90, 168, 180, 144, 216, 270, 108, 162, 216, 300, 120, 324, 126, 270, 360, 198, 138, 396, 234, 324, 288, 324, 156, 402, 360, 450, 324
Offset: 1

Views

Author

Sebastian Karlsson, Aug 17 2021

Keywords

Comments

Dirichlet convolution of A000010 with A029935.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (1/2)*(p - 1)*p^(e - 3)*(e^2*(p - 1)^2 + 3*e*(p^2 - 1) + 2*(p^2 + p + 1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 17 2021 *)
  • Python
    from sympy import divisors as div, totient as phi
    def D(f, g, n):
        return sum(f(d)*g(n//d) for d in div(n))
    def phi_o_phi(n):
        return D(phi, phi, n)
    def a(n):
        return D(phi, phi_o_phi, n)

Formula

Dirichlet g.f.: zeta(s - 1)^3 / zeta(s)^3.
Multiplicative with a(p^e) = (1/2)*(p-1)*p^(e-3)*(e^2*(p-1)^2 + 3*e*(p^2-1) + 2*(p^2 + p + 1)).
Sum_{k=1..n} a(k) ~ 27*n^2/Pi^10 * (2*Pi^4*log(n)^2 - 2*Pi^4*log(n)*(1 + 6*log(2) - 72*(1/12 - zeta'(-1)) + 6*log(Pi)) + Pi^4*(1 + 6*gamma*(2*gamma - 1) - 12*sg1) + 864*zeta'(2)^2 - 36*Pi^2*((6*gamma - 1)*zeta'(2) + zeta''(2))), where gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Jun 24 2022

A063754 Dirichlet convolution of totient and cototient.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 8, 5, 11, 1, 20, 1, 15, 13, 20, 1, 31, 1, 32, 17, 23, 1, 52, 9, 27, 21, 44, 1, 71, 1, 48, 25, 35, 21, 88, 1, 39, 29, 84, 1, 99, 1, 68, 61, 47, 1, 128, 13, 83, 37, 80, 1, 123, 29, 116, 41, 59, 1, 200, 1, 63, 81, 112, 33, 155, 1, 104, 49, 159, 1, 228, 1, 75, 101
Offset: 1

Views

Author

Labos Elemer, Aug 14 2001

Keywords

Comments

a(n) = 1 if and only if n is prime. - Robert Israel, Feb 04 2018
a(n) = n+1 if and only if n = 2*p with p an odd prime (A100484 \ {4}). - Bernard Schott, Jun 19 2023

Examples

			n = 24: divisors = {1, 2, 3, 4, 6, 8, 12, 24}, d-phi(d) = {0, 1, 1, 2, 4, 4, 8, 16}, phi(n/d) = {8, 4, 4, 2, 2, 2, 1, 1}, products = {0, 4, 4, 4, 8, 8, 8, 16}, a(24) = 52.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(numtheory:-phi(d)*(n/d - numtheory:-phi(n/d)), d=numtheory:-divisors(n)):
    map(f, [$1..100]); # Robert Israel, Feb 04 2018
  • Mathematica
    f1[p_, e_] := (e*(p - 1)/p + 1)*p^e; f2[p_, e_] := (e+1)*(p^e - p^(e-1)) - (e-1)*(p^(e-1) - p^(e-2)); a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; a[1] = 0; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*(n/d - eulerphi(n/d))); \\ Michel Marcus, Feb 05 2018

Formula

a(n) = Sum_{d|n} A000010(d)*A051953(n/d).
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} A051953(gcd(n,k)).
a(n) = Sum_{k=1..n} A051953(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)).
a(n) = A018804(n) - A029935(n). (End)
Sum_{k=1..n} a(k) ~ (1/(2*zeta(2)))*(1 - 1/zeta(2)) * n^2 * (log(n) + 2*gamma - 1/2 - ((zeta(2)-2)/(zeta(2)-1))*(zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 11 2024

Extensions

Offset corrected by Robert Israel, Feb 04 2018

A127627 Triangle T(n,k) = A054525(n,k)*A018804(k), read by rows 1<=k<=n.

Original entry on oeis.org

1, -1, 3, -1, 0, 5, 0, -3, 0, 8, -1, 0, 0, 0, 9, 1, -3, -5, 0, 0, 15, -1, 0, 0, 0, 0, 0, 13, 0, 0, 0, -8, 0, 0, 0, 20, 0, 0, -5, 0, 0, 0, 0, 0, 21, 1, -3, 0, 0, -9, 0, 0, 0, 0, 27, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 0, 3, 0, -8, 0, -15, 0, 0, 0, 0, 0, 40
Offset: 1

Views

Author

Gary W. Adamson, Jan 20 2007

Keywords

Examples

			First few rows of the triangle are:
1;
-1, 3;
-1, 0, 5;
0, -3, 0, 8;
-1, 0, 0, 0, 9;
1, -3,-5, 0, 0, 15;
...
		

Crossrefs

Cf. A054525, A018804, A029935 (row sums).

Programs

Formula

T(n,1) = A008683(n).
T(n,n) = A018804(n).
Previous Showing 21-30 of 36 results. Next