cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A262065 Numbers that are palindromes in base-60 representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 122, 183, 244, 305, 366
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 10 2015

Keywords

Examples

			.      n | a(n) |  base 60          n |  a(n) |  base 60
.   -----+------+-----------    ------+-------+--------------
.    100 | 2440 | [40, 40]       1000 | 56415 | [15, 40, 15]
.    101 | 2501 | [41, 41]       1001 | 56475 | [15, 41, 15]
.    102 | 2562 | [42, 42]       1002 | 56535 | [15, 42, 15]
.    103 | 2623 | [43, 43]       1003 | 56595 | [15, 43, 15]
.    104 | 2684 | [44, 44]       1004 | 56655 | [15, 44, 15]
.    105 | 2745 | [45, 45]       1005 | 56715 | [15, 45, 15]
.    106 | 2806 | [46, 46]       1006 | 56775 | [15, 46, 15]
.    107 | 2867 | [47, 47]       1007 | 56835 | [15, 47, 15]
.    108 | 2928 | [48, 48]       1008 | 56895 | [15, 48, 15]
.    109 | 2989 | [49, 49]       1009 | 56955 | [15, 49, 15]
.    110 | 3050 | [50, 50]       1010 | 57015 | [15, 50, 15]
.    111 | 3111 | [51, 51]       1011 | 57075 | [15, 51, 15]
.    112 | 3172 | [52, 52]       1012 | 57135 | [15, 52, 15]
.    113 | 3233 | [53, 53]       1013 | 57195 | [15, 53, 15]
.    114 | 3294 | [54, 54]       1014 | 57255 | [15, 54, 15]
.    115 | 3355 | [55, 55]       1015 | 57315 | [15, 55, 15]
.    116 | 3416 | [56, 56]       1016 | 57375 | [15, 56, 15]
.    117 | 3477 | [57, 57]       1017 | 57435 | [15, 57, 15]
.    118 | 3538 | [58, 58]       1018 | 57495 | [15, 58, 15]
.    119 | 3599 | [59, 59]       1019 | 57555 | [15, 59, 15]
.    120 | 3601 | [1, 0, 1]      1020 | 57616 | [16, 0, 16]
.    121 | 3661 | [1, 1, 1]      1021 | 57676 | [16, 1, 16]
.    122 | 3721 | [1, 2, 1]      1022 | 57736 | [16, 2, 16]
.    123 | 3781 | [1, 3, 1]      1023 | 57796 | [16, 3, 16]
.    124 | 3841 | [1, 4, 1]      1024 | 57856 | [16, 4, 16]
.    125 | 3901 | [1, 5, 1]      1025 | 57916 | [16, 5, 16]  .
		

Crossrefs

Cf. A262079 (first differences).
Intersection with A002113: A262069.
Corresponding sequences for bases 2 through 12: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957.

Programs

  • Haskell
    import Data.List.Ordered (union)
    a262065 n = a262065_list !! (n-1)
    a262065_list = union us vs where
       us = [val60 $ bs ++ reverse bs | bs <- bss]
       vs = [0..59] ++ [val60 $ bs ++ cs ++ reverse bs |
              bs <- tail bss, cs <- take 60 bss]
       bss = iterate s [0] where
             s [] = [1]; s (59:ds) = 0 : s ds; s (d:ds) = (d + 1) : ds
       val60 = foldr (\b v -> 60 * v + b) 0
    
  • Magma
    [n: n in [0..600] | Intseq(n, 60) eq Reverse(Intseq(n, 60))]; // Vincenzo Librandi, Aug 24 2016
    
  • Mathematica
    f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 60], AppendTo[lst, n]], {n, 400}]; lst (* Vincenzo Librandi, Aug 24 2016 *)
    pal60Q[n_]:=Module[{idn60=IntegerDigits[n,60]},idn60==Reverse[idn60]]; Select[Range[0,400],pal60Q] (* Harvey P. Dale, Nov 04 2017 *)
  • PARI
    isok(m) = my(d=digits(m, 60)); d == Vecrev(d); \\ Michel Marcus, Jan 22 2022
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits, mpz
    def A262065(n):
        if n == 1: return 0
        y = 60*(x:=60**integer_log(n>>1,60)[0])
        return int((c:=n-x)*x+mpz(digits(c,60)[-2::-1]or'0',60) if nChai Wah Wu, Jun 13-14 2024

A342725 Numbers that are palindromic in base i-1.

Original entry on oeis.org

0, 1, 13, 17, 189, 205, 257, 273, 3005, 3069, 3277, 3341, 4033, 4097, 4305, 4369, 48061, 48317, 49149, 49405, 52173, 52429, 53261, 53517, 64449, 64705, 65537, 65793, 68561, 68817, 69649, 69905, 768957, 769981, 773309, 774333, 785405, 786429, 789757, 790781, 834509
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Crossrefs

Similar sequences: A002113 (decimal), A006995 (binary), A014190 (base 3), A014192 (base 4), A029952 (base 5), A029953 (base 6), A029954 (base 7), A029803 (base 8), A029955 (base 9), A046807 (factorial base), A094202 (Zeckendorf), A331191 (dual Zeckendorf), A331891 (negabinary), A333423 (primorial base).

Programs

  • Mathematica
    v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}; q[n_] := PalindromeQ @ FromDigits[Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; Select[Range[0, 10^4], q]

Formula

13 is a term since its base-(i-1) presentation is 100010001 which is palindromic.

A350993 Triangular numbers that are palindromes in base 9.

Original entry on oeis.org

0, 1, 3, 6, 10, 91, 136, 300, 528, 820, 4560, 7381, 11476, 20910, 42486, 66430, 552826, 581581, 597871, 1664400, 2001000, 3420420, 3444000, 5070520, 5380840, 48427561, 75995956, 132494781, 134553810, 137158203, 159213090, 290585778, 434520460, 435848050, 669615310
Offset: 1

Views

Author

Amiram Eldar, Jan 28 2022

Keywords

Comments

This sequence is infinite since A000217((9^k-1)/2) is a term for all k >= 0 (Wishard, 1931).
Also, A000217((3 + 5*9^k)/2) is a term for all k>=0 (Trigg, 1984).

Examples

			10 is a term since 10 = A000217(4) is a triangular number and also a palindromic number in base 9: 10 = 11_9.
91 is a term since 91 = A000217(13) is a triangular number and also a palindromic number in base 9: 91 = 111_9.
		

References

  • Charles W. Trigg, Mathematical Quickies, McGraw Hill Book Co., 1967, Q112, p. 127.

Crossrefs

Intersection of A000217 and A029955.
The nonary version of A003098.

Programs

  • Mathematica
    t[n_] := n*(n + 1)/2; Select[t /@ Range[0, 3*10^5], PalindromeQ[IntegerDigits[#, 9]] &]

A297268 Numbers whose base-9 digits have equal down-variation and up-variation; see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 82, 91, 100, 109, 118, 127, 136, 145, 154, 164, 173, 182, 191, 200, 209, 218, 227, 236, 246, 255, 264, 273, 282, 291, 300, 309, 318, 328, 337, 346, 355, 364, 373, 382, 391, 400, 410, 419, 428, 437, 446
Offset: 1

Views

Author

Clark Kimberling, Jan 15 2018

Keywords

Comments

Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.
Differs from A029955 first at 739=1011_9 which is not a palindrome in base 9 but has DV(739,9)=UV(793,9) =1. - R. J. Mathar, Jan 23 2018

Examples

			446 in base-9:  5,4,5, having DV = 1, UV = 1, so that 446 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
    x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
    b = 9; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
    w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
    Take[Flatten[Position[w, -1]], 120]   (* A297267 *)
    Take[Flatten[Position[w, 0]], 120]    (* A297268 *)
    Take[Flatten[Position[w, 1]], 120]    (* A297269 *)

A333423 Numbers that are palindromes in primorial base.

Original entry on oeis.org

0, 1, 3, 7, 9, 11, 31, 39, 47, 211, 217, 223, 229, 235, 243, 249, 255, 261, 267, 275, 281, 287, 293, 299, 2311, 2347, 2383, 2419, 2455, 2523, 2559, 2595, 2631, 2667, 2735, 2771, 2807, 2843, 2879, 30031, 30061, 30091, 30121, 30151, 30181, 30211, 30247, 30277, 30307
Offset: 1

Views

Author

Amiram Eldar, Mar 20 2020

Keywords

Examples

			3 is a term since its representation in primorial base is 11 (1 * 2# + 1) which is a palindrome.
7 is a term since its representation in primorial base is 101 (1 * 3# + 0 * 2# + 1 = 6 + 1) which is a palindrome.
		

Crossrefs

Programs

  • Mathematica
    max = 6; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; Select[Range[0, nmax], PalindromeQ @ IntegerDigits[#, MixedRadix[bases]] &]

A043035 Base-9 palindromes that start with 8.

Original entry on oeis.org

8, 80, 656, 665, 674, 683, 692, 701, 710, 719, 728, 5840, 5930, 6020, 6110, 6200, 6290, 6380, 6470, 6560, 52496, 52577, 52658, 52739, 52820, 52901, 52982, 53063, 53144, 53234, 53315, 53396, 53477, 53558, 53639, 53720
Offset: 1

Views

Author

Keywords

Crossrefs

Base-9 palindromes: A029955.
Base-9 palindromes that start with d, for d=1..8: A043028..A043035.
Base-b palindromes that start with 8, for b=9,10: this sequence, A043043.

Programs

  • Mathematica
    b9dQ[n_]:=Module[{idn=IntegerDigits[n,9]},idn==Reverse[idn]&&idn[[1]] == 8]; Select[Range[60000],b9dQ] (* Harvey P. Dale, Sep 03 2016 *)

A043030 Base-9 palindromes that start with 3.

Original entry on oeis.org

3, 30, 246, 255, 264, 273, 282, 291, 300, 309, 318, 2190, 2280, 2370, 2460, 2550, 2640, 2730, 2820, 2910, 19686, 19767, 19848, 19929, 20010, 20091, 20172, 20253, 20334, 20424, 20505, 20586, 20667, 20748, 20829, 20910
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{idn = IntegerDigits[n, 9]}, First[idn] == 3 && FromDigits[IntegerDigits[n, 9]] == FromDigits[Reverse[idn]]]; Select[Range[20910], okQ] (* Robert P. P. McKone, Aug 22 2021, after Harvey P. Dale in A043038 *)

A046242 Cubes which are palindromes in base 9.

Original entry on oeis.org

0, 1, 8, 1000, 54872, 551368, 753571, 389017000, 282558696328, 293151929707, 205901592625000, 150095482587202888, 150714005985636211, 109419057761904073000, 79766448635933205559048, 79802927193348078816187
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Intersection of A029955 and A000578.
Cf. A046241.

Programs

  • Mathematica
    Select[Range[0,44*10^6]^3,IntegerDigits[#,9]==Reverse[ IntegerDigits[ #,9]]&] (* Harvey P. Dale, Oct 09 2016 *)

Formula

a(n) = A046241(n)^3. - Andrew Howroyd, Aug 10 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 10 2024

A260184 Numbers n written in base 10 that are palindromic in exactly three bases b, 2 <= b <= 10 and not simultaneously bases 2, 4 and 8.

Original entry on oeis.org

9, 10, 21, 40, 55, 80, 85, 100, 130, 154, 164, 178, 191, 203, 235, 242, 255, 257, 273, 282, 292, 300, 328, 400, 455, 585, 656, 819, 910, 2709, 6643, 8200, 14762, 32152, 53235, 74647, 428585, 532900, 1181729, 1405397, 4210945, 5259525, 27711772, 719848917, 43253138565
Offset: 1

Views

Author

Keywords

Examples

			273 is in the sequence because 100010001_2 = 101010_3 = 10101_4 = 2043_5 = 1133_6 = 540_7 = 421_8 = 333_9 = 273_10 and three of the bases, namely 2, 4 & 9, yield palindromes.
		

Crossrefs

Programs

  • Mathematica
    (* see A214425 and set all terms as lst, then *)
    gQ[n_] := Count[ palQ[n,#] & /@ {2, 4, 8}, True];
    Select[ lst, gQ[#] != 3 &]

Formula

The intersection of A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955 & A002113 which yields just three members, not simultaneously bases 2, 4 and 8.

A043034 Base-9 palindromes that start with 7.

Original entry on oeis.org

7, 70, 574, 583, 592, 601, 610, 619, 628, 637, 646, 5110, 5200, 5290, 5380, 5470, 5560, 5650, 5740, 5830, 45934, 46015, 46096, 46177, 46258, 46339, 46420, 46501, 46582, 46672, 46753, 46834, 46915, 46996, 47077, 47158
Offset: 1

Views

Author

Keywords

Crossrefs

Base-9 palindromes: A029955.
Base-9 palindromes that start with d, for d=1..8: A043028..A043035.
Base-b palindromes that start with 7, for b=8..10: A043027, this sequence, A043042.
Previous Showing 21-30 of 32 results. Next