cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A126584 Decimal expansion of solution to exp(-x) = x^3.

Original entry on oeis.org

7, 7, 2, 8, 8, 2, 9, 5, 9, 1, 4, 9, 2, 1, 0, 1, 1, 2, 8, 4, 8, 7, 4, 8, 6, 0, 4, 8, 7, 8, 2, 9, 3, 3, 7, 2, 7, 2, 9, 0, 7, 7, 9, 4, 2, 5, 0, 9, 6, 1, 3, 4, 7, 4, 6, 0, 1, 8, 5, 3, 4, 3, 2, 1, 9, 8, 9, 5, 7, 3, 8, 7, 8, 2, 5, 6, 1, 3, 1, 1, 7, 3, 7, 8, 9, 1, 9, 6, 6, 3, 8, 0, 2, 3, 0, 0, 7, 5, 1, 7, 4, 8
Offset: 0

Views

Author

Denton J. Dailey (denton.dailey(AT)bc3.edu), Jan 05 2007

Keywords

Examples

			0.7728829591492101128487486048782933727290779425096134746...
		

Crossrefs

Cf. A030178.

Programs

  • Mathematica
    RealDigits[ FindRoot[ Exp[ -x] == x^3, {x, {.5, 1}}, WorkingPrecision -> 120][[1, 2, 1]], 10, 111][[1]]
    RealDigits[ 3*ProductLog[1/3], 10, 102] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    3*lambertw(1/3) \\ G. C. Greubel, Mar 06 2018

Formula

Equals 3*LambertW(1/3). - G. C. Greubel, Mar 06 2018

A019474 Continued fraction expansion of W(1), where W(x) is the Lambert W function (the root of w*exp(w) = x).

Original entry on oeis.org

0, 1, 1, 3, 4, 2, 10, 4, 1, 1, 1, 1, 2, 7, 306, 1, 5, 1, 2, 1, 5, 1, 1, 1, 1, 7, 1, 4, 2, 15, 1, 2, 1, 1, 4, 1, 3, 3, 5, 4, 1, 1, 1, 4, 3, 1, 38, 1, 2, 4, 1, 5, 2, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 5, 3, 2, 11, 1, 1, 1, 49, 4, 1, 1, 1
Offset: 0

Views

Author

Robert Corless (rmc(AT)pineapple.apmaths.uwo.ca), N. J. A. Sloane

Keywords

Examples

			0.5671432904097838...
		

Crossrefs

Cf. A030178.

Programs

  • Maple
    Digite := 80: evalf(LambertW(1)); convert(%,confrac);
  • Mathematica
    ContinuedFraction[ ProductLog[1], 78]  (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    contfrac(lambertw(1)) \\ G. C. Greubel, Mar 03 2018

A115287 Decimal expansion of 1/(1+LambertW(1)).

Original entry on oeis.org

6, 3, 8, 1, 0, 3, 7, 4, 3, 3, 6, 5, 1, 1, 0, 7, 7, 8, 5, 2, 2, 4, 0, 7, 3, 8, 5, 5, 1, 9, 8, 8, 0, 3, 1, 4, 4, 4, 3, 9, 3, 3, 8, 4, 1, 2, 8, 9, 0, 2, 7, 6, 4, 0, 4, 1, 9, 4, 8, 3, 1, 9, 3, 6, 5, 0, 3, 4, 2, 1, 0, 1, 0, 5, 6, 7, 6, 0, 0, 8, 3, 0, 4, 1, 0, 0, 1, 8, 5, 2, 5, 1, 0, 5, 2, 7, 4, 8, 3, 3, 1, 5, 7, 0, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 19 2006

Keywords

Examples

			0.63810374336511077852...
		

Crossrefs

Programs

Formula

Equals Integral_{x=-oo..oo} 1/(Pi^2 + (exp(x)-x)^2) dx (discovered by Victor Adamchik). - Amiram Eldar, Jul 04 2021

A200320 E.g.f. satisfies: A(x) = x-1 + exp(A(x)^2/2).

Original entry on oeis.org

1, 1, 3, 18, 150, 1590, 20580, 314790, 5554710, 111071520, 2482076520, 61301435580, 1658129152680, 48749053413060, 1547849157554700, 52785934927525800, 1924269399236784600, 74672595203551745400, 3073314600152521124400, 133716009695044269893400, 6132253708189762323370200
Offset: 1

Views

Author

Paul D. Hanna, Nov 15 2011

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 18*x^4/4! + 150*x^5/5! +...
where A(1+x - exp(x^2/2)) = x and A(x) = x-1 + exp(A(x)^2/2).
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[1 - E^(x^2/2) + x,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
  • PARI
    {a(n)=n!*polcoeff(serreverse(1+x-exp(x^2/2+x^2*O(x^n))),n)}

Formula

E.g.f.: Series_Reversion(1+x - exp(x^2/2)).
a(n) ~ n^(n-1) * c^(n/2) / (sqrt(1+c) * exp(n) * (c-1+sqrt(c))^(n-1/2)), where c = LambertW(1) = 0.5671432904... (see A030178). - Vaclav Kotesovec, Jan 10 2014

A342359 Decimal expansion of arctan(sqrt(Omega)), where Omega=LambertW(1) is the Omega constant.

Original entry on oeis.org

6, 4, 5, 4, 7, 5, 2, 4, 4, 5, 6, 5, 0, 0, 3, 9, 2, 4, 4, 3, 5, 7, 3, 1, 5, 5, 4, 5, 6, 6, 0, 6, 6, 3, 6, 5, 2, 2, 4, 6, 7, 7, 2, 0, 5, 5, 9, 4, 0, 2, 1, 5, 1, 6, 1, 8, 1, 6, 8, 0, 0, 6, 7, 5, 3, 1, 7, 5, 0, 9, 5, 5, 3, 7, 3, 1, 2, 5, 6, 8, 8, 3, 6, 5, 1, 3, 9, 2, 5, 3, 9, 2, 7, 1, 9, 0
Offset: 0

Views

Author

Gleb Koloskov, Mar 09 2021

Keywords

Comments

The sine and the cosine of this angle appears in the values of two definite integrals that involve non-principal real branch of the Lambert W function, see A342360 and A342361.

Examples

			0.6454752445650039244357315545660663652246772055940215161816...
		

Crossrefs

Programs

  • Mathematica
    Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[xi,120]
  • PARI
    atan(sqrt(lambertw(1)))

Formula

Equals arctan(sqrt(LambertW(1))).

A342360 Decimal expansion of 1/(Omega+1)^2, where Omega=LambertW(1) is the Omega constant.

Original entry on oeis.org

4, 0, 7, 1, 7, 6, 3, 8, 7, 2, 9, 6, 5, 6, 7, 1, 5, 7, 9, 0, 2, 8, 9, 0, 2, 0, 4, 7, 3, 5, 3, 9, 7, 6, 7, 7, 3, 1, 0, 5, 1, 0, 6, 4, 4, 1, 3, 4, 5, 2, 8, 4, 6, 5, 1, 4, 4, 9, 3, 3, 3, 9, 6, 9, 2, 9, 8, 1, 3, 2, 0, 9, 6, 6, 7, 5, 4, 1, 8, 5, 8, 6, 9, 5, 0, 8, 4, 0, 5, 5, 0, 8, 9, 6, 6, 6
Offset: 0

Views

Author

Gleb Koloskov, Mar 09 2021

Keywords

Examples

			0.40717638729656715790289020473539767731...
		

Crossrefs

Programs

  • Mathematica
    Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Cos[xi]^4,120]
    Omega=LambertW[1]; N[1/(Omega+1)^2,120]
    Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1,-t*Omega^omega])^Omega,{t,0,1}, WorkingPrecision->120]
  • PARI
    cos(atan(sqrt(lambertw(1))))^4
    
  • PARI
    my(Omega=lambertw(1)); 1/(Omega+1)^2

Formula

Equals cos(A342359)^4 = 1/(A030178+1)^2 = (1-sqrt(A342361))^2.
Equals Integral_{t=0..1} (-t/LambertW(-1,-t*Omega^omega))^Omega, where omega=1/Omega=1/LambertW(1).
Equals A115287^2. - Vaclav Kotesovec, Mar 12 2021

A342361 Decimal expansion of 1/(omega+1)^2, where omega=1/LambertW(1).

Original entry on oeis.org

1, 3, 0, 9, 6, 8, 9, 0, 0, 5, 6, 6, 3, 4, 5, 6, 0, 0, 8, 5, 8, 0, 7, 5, 4, 3, 3, 6, 9, 5, 6, 3, 7, 0, 4, 8, 4, 2, 2, 6, 4, 2, 9, 6, 1, 5, 5, 6, 4, 7, 3, 1, 8, 4, 3, 0, 5, 9, 6, 7, 0, 0, 9, 6, 2, 9, 1, 2, 9, 0, 0, 7, 5, 5, 4, 0, 2, 1, 6, 9, 2, 6, 1, 3, 0, 8, 0, 3, 5, 0, 0, 6, 8, 6, 1, 1
Offset: 0

Views

Author

Gleb Koloskov, Mar 09 2021

Keywords

Examples

			0.1309689005663456008580754336956370484226429615564731843
		

Crossrefs

Programs

  • Mathematica
    Omega=LambertW[1]; xi=ArcTan[Sqrt[Omega]]; N[Sin[xi]^4,120]
    omega=1/LambertW[1]; N[1/(omega+1)^2,120]
    Omega=LambertW[1]; omega=1/Omega; NIntegrate[(-t/LambertW[-1,-t*Omega^omega])^omega,{t,0,1}, WorkingPrecision->120]
    RealDigits[1/(1/LambertW[1]+1)^2,10,120][[1]] (* Harvey P. Dale, Mar 26 2025 *)
  • PARI
    my(Omega=lambertw(1), xi=atan(sqrt(Omega))); sin(xi)^4
    
  • PARI
    1/(1/lambertw(1)+1)^2

Formula

Equals Integral_{t=0..1} (-t/W(-1,-t*Omega^omega))^omega, where omega = 1/Omega = 1/LambertW(1).
Equals sin(A342359)^4 = 1/(A030797+1)^2 = (1-sqrt(A342360))^2.

A369550 Expansion of e.g.f. A(x) satisfying A(x) = exp(x) * A(x^2*exp(x)).

Original entry on oeis.org

1, 1, 3, 13, 85, 701, 6901, 79045, 1049385, 15924025, 271248121, 5108389001, 105158055949, 2346022349269, 56348945801877, 1449434215375021, 39758549273200081, 1159092552400164977, 35813081725133941297, 1169791166246561367697, 40297553373717279300981, 1460613225168596836153741
Offset: 0

Views

Author

Paul D. Hanna, Jan 29 2024

Keywords

Comments

Limit (a(n)/n!)^(1/n) = 1/w where w*exp(w) = 1 and w = LambertW(1) = 0.567143290409783872999968... (cf. A030178).

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! + 6901*x^6/6! + 79045*x^7/7! + 1049385*x^8/8! + 15924025*x^9/9! + ...
RELATED SERIES.
The expansion of A(x^2*exp(x)) begins
exp(-x) * A(x) = A(x^2*exp(x)) = 1 + 2*x^2/2! + 6*x^3/3! + 48*x^4/4! + 380*x^5/5! + 3750*x^6/6! +  + 42882*x^7/7! + 576296*x^8/8! + ...
The logarithm of e.g.f. A(x) equals L(x) where L(x) = x + L(x^2*exp(x)),
L(x) = x + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 260*x^5/5! + 2190*x^6/6! + 21882*x^7/7! + 268856*x^8/8! + ... + A369091(n)*x^n/n! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x, X = x + x*O(x^n)); for(i=1,n, A = exp(X) * subst(A,x,x^2*exp(X)) ); n!*polcoeff(A,n)}
    for(n=0,30, print1(a(n),", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = exp(x) * A(x^2*exp(x)).
(2) A(x) = exp( Sum_{n>=0} F(n) ), where F(0) = x, and F(n+1) = F(n)^2 * exp(F(n)) for n >= 0.
(3) A(x) = exp(L(x)) where L(x) = x + L(x^2*exp(x)) is the e.g.f of A369091.
(4) A(x) = G(x)/x where G(x) = G(x^2*exp(x))/x is the e.g.f. of A369090.
a(n) = A369090(n+1)/(n+1) for n >= 0.

A369551 Expansion of e.g.f. A(x) satisfying A(x) = 1 + x*exp(x) * A(x^2*exp(x)).

Original entry on oeis.org

1, 1, 2, 9, 52, 365, 3126, 33607, 434120, 6397785, 104813290, 1881831611, 36703128012, 773468319637, 17544261523166, 427299522260535, 11158470652237456, 311944165793916977, 9313905287778153426, 296051128664550195763, 9979462242106491507860, 355292353569342771519021
Offset: 0

Views

Author

Paul D. Hanna, Jan 29 2024

Keywords

Comments

Limit (a(n)/n!)^(1/n) = 1/w where w*exp(w) = 1 and w = LambertW(1) = 0.567143290409783872999968... (cf. A030178).

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 365*x^5/5! + 3126*x^6/6! + 33607*x^7/7! + 434120*x^8/8! + 6397785*x^9/9! + 104813290*x^10/10! + ...
RELATED SERIES.
The expansion of A(x^2*exp(x)) begins
A(x^2*exp(x)) = 1 + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 260*x^5/5! + 2550*x^6/6! + 29442*x^7/7! + 386456*x^8/8! + ...
where A(x) = 1 + x*exp(x) * A(x^2*exp(x)).
The expansion of exp(x*A(x)) is the e.g.f. of A369550, which begins
exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 85*x^4/4! + 701*x^5/5! + 6901*x^6/6! + 79045*x^7/7! + 1049385*x^8/8! + ... + A369550(n)*x^n/n! + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x, X = x + x*O(x^n)); for(i=1, n, A = 1 + x*exp(X) * subst(A, x, x^2*exp(X)) ); n!*polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = 1 + x*exp(x) * A(x^2*exp(x)).
(2) A(x) = (1/x) * Sum_{n>=0} F(n), where F(0) = x, and F(n+1) = F(n)^2 * exp(F(n)) for n >= 0.
(3) A(x) = log(G(x)) / x where G(x) = exp(x) * G(x^2*exp(x)) is the e.g.f. of A369550.
(4) A(x) = L(x)/x where L(x) = x + L(x^2*exp(x)) is the e.g.f of A369091.
a(n) = A369091(n+1)/(n+1) for n >= 0.

A126585 Decimal expansion of solution to exp(-x) = x^4.

Original entry on oeis.org

8, 1, 5, 5, 5, 3, 4, 1, 8, 8, 0, 8, 9, 6, 0, 6, 5, 7, 7, 7, 2, 7, 2, 7, 3, 2, 5, 3, 0, 8, 5, 5, 9, 4, 8, 0, 5, 9, 7, 4, 0, 9, 9, 0, 8, 8, 4, 0, 6, 3, 8, 5, 3, 9, 8, 9, 3, 6, 2, 5, 0, 4, 0, 3, 2, 7, 2, 7, 7, 4, 5, 6, 2, 6, 8, 3, 7, 6, 2, 1, 0, 4, 7, 2, 6, 5, 8, 2, 8, 5, 2, 4, 3, 1, 8, 2, 4, 3, 5, 2, 4, 4
Offset: 0

Views

Author

Denton J. Dailey (denton.dailey(AT)bc3.edu), Jan 05 2007

Keywords

Examples

			0.81555341880896065777272732530855948059740990884063853...
		

Crossrefs

Cf. A030178.

Programs

  • Mathematica
    RealDigits[ FindRoot[ Exp[ -x] == x^4, {x, {.5, 1}}, WorkingPrecision -> 120][[1, 2, 1]], 10, 111][[1]]
    RealDigits[ 4*ProductLog[1/4], 10, 102] // First (* Jean-François Alcover, Feb 27 2013 *)
  • PARI
    4*lambertw(1/4) \\ G. C. Greubel, Mar 06 2018

Formula

Equals 4*LambertW(1/4). - G. C. Greubel, Mar 06 2018
Previous Showing 31-40 of 52 results. Next