cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A308063 Number of ordered factorizations of n into numbers with an odd number of distinct prime divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 5, 1, 2, 2, 8, 1, 5, 1, 5, 2, 2, 1, 12, 2, 2, 4, 5, 1, 7, 1, 16, 2, 2, 2, 14, 1, 2, 2, 12, 1, 7, 1, 5, 5, 2, 1, 28, 2, 5, 2, 5, 1, 12, 2, 12, 2, 2, 1, 21, 1, 2, 5, 32, 2, 7, 1, 5, 2, 7, 1, 37, 1, 2, 5, 5, 2, 7, 1, 28, 8, 2, 1, 21, 2, 2, 2, 12, 1, 21
Offset: 1

Views

Author

Ilya Gutkovskiy, May 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 90; A[] = 0; Do[A[x] = x + Sum[Boole[OddQ[PrimeNu[k]]] A[x^k], {k, 1, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; Rest[CoefficientList[A[x], x]]
    f[n_] := f[n] = Boole[OddQ[PrimeNu[n]]]; a[n_] := If[n == 1, n, Sum[If[d < n, f[n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 90}]
  • PARI
    a(n) = if(n == 1, 1, sumdiv(n, d, if(dAmiram Eldar, Jul 03 2025

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=1} A(x^A030230(k)).
a(1) = 1; a(n) = Sum_{d|n, dA092248(n/d)*a(d).
a(n) = 1 if n is in A008578.

A214195 Numbers with the number of distinct prime factors a multiple of 3.

Original entry on oeis.org

1, 30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285
Offset: 1

Views

Author

Enrique Pérez Herrero, Jul 07 2012

Keywords

Comments

If GCD(a(n),a(m))=1, then a(n)*a(m) is also in this sequence. - Enrique Pérez Herrero, Nov 23 2013

Crossrefs

Subsequences include A033992, A067885, A007304 and A147573.

Programs

  • Mathematica
    Select[Range[1000],Mod[PrimeNu[#],3]==0&]
  • PARI
    is(n)=omega(n)%3==0 \\ Charles R Greathouse IV, Sep 14 2015

Formula

A010872(A001221(a(n))) = 0.

A327669 Sum of divisors of n that have an odd number of distinct prime factors.

Original entry on oeis.org

0, 2, 3, 6, 5, 5, 7, 14, 12, 7, 11, 9, 13, 9, 8, 30, 17, 14, 19, 11, 10, 13, 23, 17, 30, 15, 39, 13, 29, 40, 31, 62, 14, 19, 12, 18, 37, 21, 16, 19, 41, 54, 43, 17, 17, 25, 47, 33, 56, 32, 20, 19, 53, 41, 16, 21, 22, 31, 59, 104, 61, 33, 19, 126, 18, 82, 67, 23, 26, 84
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 21 2019

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(nops(factorset(d))::odd, d, 0), d=divisors(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 21 2019
  • Mathematica
    a[n_] := DivisorSum[n, # &, OddQ[PrimeNu[#]] &]; Table[a[n], {n, 1, 70}]

Formula

G.f.: Sum_{k>=1} A030230(k) * x^A030230(k) / (1 - x^A030230(k)).
L.g.f.: log(B(x)) = Sum_{n>=1} a(n) * x^n / n, where B(x) = g.f. of A285799.
a(n) = Sum_{d|n} d * A092248(d).
a(n) = A000203(n) - A327670(n).
a(p) = p, where p is prime.

A328856 Number of factorizations of n into distinct numbers with an odd number of distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2019

Keywords

Examples

			a(32) = 3 because 32 = 4 * 8 = 2 * 16.
		

Crossrefs

Programs

  • PARI
    seq(n)={my(v=vector(n, k, k==1)); for(k=2, n, if(omega(k)%2, my(m=logint(n, k), p=(1 + x + O(x*x^m)), w=vector(n)); for(i=0, m, w[k^i]=polcoef(p, i)); v=dirmul(v, w))); v} \\ Andrew Howroyd, Oct 29 2019, In older versions of PARI, use polcoeff instead of polcoef. - Antti Karttunen, Oct 29 2019
    
  • PARI
    A328856(n, k=n) = (((n<=k)&&((1==n)||(omega(n)%2))) + sumdiv(n, d, if(d > 1 && d <= k && d < n && (omega(d)%2), A328856(n/d, d-1)))); \\ Antti Karttunen, Oct 29 2019

Formula

Dirichlet g.f.: Product_{k>=1} (1 + A030230(k)^(-s)).
a(n) <= A045778(n). - Antti Karttunen, Oct 29 2019

Extensions

More terms from Antti Karttunen, Oct 29 2019

A081400 a(n) = d(n) - bigomega(n) - A005361(n).

Original entry on oeis.org

0, 0, 0, -1, 0, 1, 0, -2, -1, 1, 0, 1, 0, 1, 1, -3, 0, 1, 0, 1, 1, 1, 0, 1, -1, 1, -2, 1, 0, 4, 0, -4, 1, 1, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 1, 1, 0, 1, -1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 6, 0, 1, 1, -5, 1, 4, 0, 1, 1, 4, 0, 1, 0, 1, 1, 1, 1, 4, 0, 1, -3, 1, 0, 6, 1, 1, 1, 1, 0, 6, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 4, 0, 1, 4, 1, 0, 1, 0, 4, 1, 1, 0, 4, 1, 1, 1, 1, 1, 8, -1, 1
Offset: 1

Views

Author

Labos Elemer, Mar 28 2003

Keywords

Examples

			Negative for true prime powers; zero for 1 and primes; see also A030231, A007304, A034683, A075819 etc. to judge about positivity or magnitude.
		

Crossrefs

Programs

  • PARI
    a(n) = my(f=factor(n)); numdiv(n) - bigomega(n) - prod(k=1, #f~, f[k,2]); \\ Michel Marcus, May 25 2017
    
  • Python
    from sympy import primefactors, factorint, divisor_count
    from operator import mul
    def bigomega(n): return 0 if n==1 else bigomega(n/primefactors(n)[0]) + 1
    def a005361(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [f[i] for i in f])
    def a(n): return divisor_count(n) - bigomega(n) - a005361(n) # Indranil Ghosh, May 25 2017

Formula

a(n) = A000005(n) - A001222(n) - A005361(n).

A175264 a(n) = the middle prime among the distinct primes dividing {the n-th positive integer divisible by exactly an odd number of distinct primes}.

Original entry on oeis.org

2, 3, 2, 5, 7, 2, 3, 11, 13, 2, 17, 19, 23, 5, 3, 29, 3, 31, 2, 37, 41, 3, 43, 47, 7, 53, 59, 3, 61, 2, 3, 67, 5, 71, 73, 3, 79, 3, 83, 3, 89, 3, 97, 101, 3, 103, 5, 107, 109, 5, 113, 3, 3, 11, 5, 3, 127, 2, 5, 131, 3, 137, 3, 139, 5, 149, 3, 151, 7, 3, 157, 163, 5, 167, 3, 13, 5, 173, 3
Offset: 1

Views

Author

Leroy Quet, Mar 16 2010

Keywords

Examples

			The 28th positive integer divisible by exactly an odd number of distinct primes is 60. 60 is factored as 2^2*3*5. The distinct primes dividing 60 are therefore 2, 3, and 5. Since the middle of these primes is 3, then a(28) = 3.
		

Crossrefs

Programs

  • Mathematica
    mp[n_]:=Module[{prs=Transpose[FactorInteger[n]][[1]],pos},pos= Floor[ Length[ prs]/2]+1;prs[[pos]]]; mp/@Select[Range[300],OddQ[PrimeNu[#]]&] (* Harvey P. Dale, Jun 20 2012 *)

Extensions

More terms from R. J. Mathar, Oct 09 2010

A321962 Where the zeros in A123066 occur.

Original entry on oeis.org

1, 51, 53, 7955, 7959, 7961, 7985, 7987, 8245, 8805, 8807, 8809, 8813, 8815, 8817, 8819, 8821, 8825, 8829, 8847, 8851, 8853, 8855, 8857, 8859, 8873, 8877, 8879, 8969, 8973, 8975, 9063, 9079, 9081, 9083, 9089, 9091, 9093, 9095, 9097, 9163, 9165, 9215, 9219
Offset: 1

Views

Author

Peter Luschny, Dec 21 2018

Keywords

Comments

Let pp(n) be the prime parity of n, defined as 1 if the number of distinct primes dividing n is odd and -1 if it is even; by convention pp(1) = 0. The cumulative sum of pp is A123066. We call the initial segment of the integers [1..n] balanced with respect to prime parity if the cumulative sum of pp(n) is 0. [1..a(n)] give the balanced segments.

Crossrefs

Programs

  • Maple
    a_list := proc(len) local omega, c, L, j; c := 0; L := 1;
    omega := n -> nops(numtheory[factorset](n));
    for j from 2 to len do
       c := c + (-1)^omega(j);
       if c = 0 then L := L,j fi
    od; L end: a_list(10000);
  • Mathematica
    A123066[n_] := Join[{0}, Accumulate[Table[-(-1)^PrimeNu[j], {j,2,n}]]];
    A321962List[n_] := Position[A123066[n], 0] // Flatten;
    A321962List[10000]

A328502 Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(s-2)).

Original entry on oeis.org

1, -3, -7, -2, -21, 21, -43, -4, -12, 63, -111, 14, -157, 129, 147, -8, -273, 36, -343, 42, 301, 333, -507, 28, -80, 471, -36, 86, -813, -441, -931, -16, 777, 819, 903, 24, -1333, 1029, 1099, 84, -1641, -903, -1807, 222, 252, 1521, -2163, 56, -252, 240, 1911, 314, -2757, 108, 2331
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 22 2019

Keywords

Comments

Dirichlet inverse of A057660.

Crossrefs

Cf. A000010, A008683, A030230 (positions of negative terms), A057660, A101035.

Programs

  • Mathematica
    a[1] = 1; a[n_] := -Sum[DivisorSigma[2, (n/d)^2]/DivisorSigma[1, (n/d)^2] a[d], {d, Most @ Divisors[n]}]; Table[a[n], {n, 1, 55}]
    Table[DivisorSum[n, EulerPhi[n/#] MoebiusMu[#] #^2 &], {n, 1, 55}]
    f[p_, e_] := If[e == 1, p - 1 - p^2, -p^(e - 1)*(p - 1)^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 03 2022 *)
  • PARI
    a(n)={sumdiv(n, d, eulerphi(n/d)*moebius(d)*d^2)} \\ Andrew Howroyd, Oct 25 2019

Formula

a(1) = 1; a(n) = -Sum_{d|n, dA057660(n/d) * a(d).
a(n) = Sum_{d|n} phi(n/d) * mu(d) * d^2.
Multiplicative with a(p) = p - 1 - p^2, and a(p^e) = -p^(e-1) * (p-1)^2, for e > 1. - Amiram Eldar, Dec 03 2022
a(n) = Sum_{k = 1..n} gcd(k, n)^2 * mu(gcd(k, n)) (follows from an identity of Cesàro. See, for example, Bordelles, Lemma 1). - Peter Bala, Jan 16 2024

A328855 Number of factorizations of n into numbers with an odd number of distinct prime factors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 2, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 2, 11, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 1, 2, 1, 5, 5, 1, 1, 4, 1, 1, 1, 3, 1, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2019

Keywords

Examples

			a(8) = 3 because 8 = 2 * 4 = 2 * 2 * 2.
		

Crossrefs

Formula

Dirichlet g.f.: Product_{k>=1} 1 / (1 - A030230(k)^(-s)).
Previous Showing 11-19 of 19 results.