cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 59 results. Next

A248855 a(n) is the smallest positive integer m such that if k >= m then a(k+1,n)^(1/(k+1)) <= a(k,n)^(1/k), where a(k,n) is the k-th term of the sequence {p | p and p+2n are primes}.

Original entry on oeis.org

1, 1, 1, 1, 3556, 1, 34, 3, 4, 1, 2, 1, 11285, 5, 2, 124, 569, 1, 290, 3, 1, 165, 2, 1, 1, 2, 1, 316, 1, 2, 58957, 1, 3, 58617, 522, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 7932, 4, 1, 5875, 1679, 4, 4, 3, 3, 1, 2, 307, 1, 1, 1, 1, 1, 4, 3206, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 2, 11170, 1, 2, 4245, 1, 1, 81, 2, 1, 1, 2, 58, 1, 3, 4, 7303, 1, 1, 5, 1, 3, 3, 3, 383, 111408, 1
Offset: 0

Views

Author

Keywords

Comments

All terms conjecturally are found. Note that according to the definition a(k,0) is the k-th term of the sequence {p | p is prime} namely for every positive integer k, a(k,0) = prime(k). Hence if Firoozbakht's conjecture is true then a(0)=1.

Examples

			a(0)=a(1)=a(2)=a(3)=1 conjecturally states that the four sequences A000040, A001359, A023200 and A023201 have this property: For every positive integer n, b(n) exists and b(n+1) < b(n)^(1+1/n). Namely b(n)^(1/n) is a strictly decreasing function of n.
If in the definition instead of the sequence {p | p and p+2n are primes} we set {p | p is prime and nextprime(p)=p+2n} then it seems that except for n=3 all terms of the new sequence {c(n)} are equal to 1 and for n=3, c(3)=7746. Note that c(3)=7746 means that the sequence {p | p is prime and nextprime(p)=p+6} = A031924 has this property: For all k >= 7746, A031924(k+1)^(1/(k+1)) < A031924(k)^(1/k).
		

Crossrefs

A346239 Möbius transform of A341512, sigma(n)*A003961(n) - n*sigma(A003961(n)).

Original entry on oeis.org

0, 1, 2, 10, 2, 33, 4, 74, 44, 55, 2, 278, 4, 115, 116, 490, 2, 613, 4, 498, 242, 169, 6, 1942, 92, 265, 742, 1046, 2, 1591, 6, 3086, 344, 355, 330, 4986, 4, 487, 542, 3570, 2, 3347, 4, 1638, 2326, 737, 6, 12542, 376, 2121, 716, 2546, 6, 9869, 388, 7510, 986, 943, 2, 12894, 6, 1225, 4872, 18970, 630, 5353, 4, 3498, 1492
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2021

Keywords

Crossrefs

Cf. also the sequences A001359, A029710, A031924 that give the positions of 2's, 4's and 6's in this sequence, or at least subsets of such positions.

Programs

Formula

a(n) = Sum_{d|n} A008683(n/d) * A341512(d).
a(n) = A341512(n) - A346240(n).
a(n) = A347125(n) - A347124(n). - Antti Karttunen, Aug 25 2021

A382810 Primes p such that p + 6, p + 10 and p + 16 are also primes.

Original entry on oeis.org

7, 13, 31, 37, 73, 97, 157, 223, 373, 433, 1087, 1291, 1423, 1483, 1543, 1861, 1987, 2341, 2383, 2677, 2683, 3313, 3607, 4441, 4507, 4783, 4993, 5641, 5851, 6037, 6961, 7237, 7867, 8731, 9613, 9733, 10723, 13093, 13681, 14143, 14731, 16057, 16411, 16921, 17377
Offset: 1

Views

Author

Alexander Yutkin, Apr 05 2025

Keywords

Comments

The four primes need not be consecutive; otherwise we have the sequence A078856.

Examples

			p=37: 37+6=43, 37+10=47, 37+16=53 -> prime quartet: (37, 43, 47, 53).
		

Crossrefs

Cf. A078852 [4, 6, 6], A078856 [6, 4, 6], A078858 [6, 6, 4], A033451 [6, 6, 6].

Programs

  • Maple
    q:= p-> andmap(i->isprime(p+i), [0, 6, 10, 16]):
    select(q, [$2..20000])[];  # Alois P. Heinz, Apr 05 2025
  • Mathematica
    Select[Prime[Range[2000]],AllTrue[#+{6,10,16},PrimeQ]&] (* James C. McMahon, Apr 13 2025 *)

A078562 p, p+6 and p+10 are consecutive primes.

Original entry on oeis.org

31, 61, 73, 157, 271, 373, 433, 607, 733, 751, 1291, 1543, 1657, 1777, 1861, 1987, 2131, 2287, 2341, 2371, 2383, 2467, 2677, 2791, 2851, 3181, 3313, 3607, 3691, 4441, 4507, 4723, 4993, 5407, 5431, 5521, 5563, 5641, 5683, 5851, 6037, 6211, 6571, 6961
Offset: 1

Views

Author

Labos Elemer, Dec 10 2002

Keywords

Comments

Subsequence of A031924. - R. J. Mathar, Jun 15 2013

Examples

			Between p and p+10 the difference-pattern is [64] like e.g. for p=31: 31(6)37(4)41.
		

Crossrefs

Cf. analogous inter-prime d-patterns with d<=6: A022004[24], A022005[42], A049437[26], A049438[62], A078561[46], A078562[64], A047948[66].

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[1000]],3,1],#[[3]]-#[[1]]==10&&#[[2]]-#[[1]]==6&]][[1]] (* Harvey P. Dale, Dec 09 2010 *)

A192175 Array of primes determined by distance to next prime, by antidiagonals.

Original entry on oeis.org

2, 3, 7, 5, 13, 23, 11, 19, 31, 89, 17, 37, 47, 359, 139, 29, 43, 53, 389, 181, 199, 41, 67, 61, 401, 241, 211, 113, 59, 79, 73, 449, 283, 467, 293, 1831, 71, 97, 83, 479, 337, 509, 317, 1933, 523, 101, 103, 131, 491, 409, 619, 773, 2113, 1069, 887, 107
Offset: 1

Views

Author

Clark Kimberling, Jun 24 2011

Keywords

Comments

Row 1: primes p such that p+1 or p+2 is a prime.
Row r>1: primes p such that the least h for which p+2h is prime is r.

Examples

			Northwest corner:
  2.....3.....5.....11....17....29....41
  7.....13....19....37....43....67....79
  23....31....47....53....61....73....83
  89....359...389...401...449...479...491
  139...181...241...283...337...409...421
For example, 31 is in row 3 because 31+2*3 is a prime, unlike 31+2*1 and 31+2*2.  Every prime occurs exactly once.  For each row, it is not known whether it is finite.
		

Crossrefs

Programs

  • Mathematica
    z = 5000; (* z=number of primes used *)
    row[1] = (#1[[1]] &) /@ Cases[Array[{#1,
          PrimeQ[1 + Prime[#1]] || PrimeQ[2 + Prime[#1]]} &, {z}], {_, True}];
    Do[row[x] = Complement[(#1[[1]] &) /@ Cases[Array[{#1, PrimeQ[2 x + Prime[#1]]} &, {z}], {_, True}], Flatten[Array[row, {x - 1}]]], {x, 2, 16}]; TableForm[Array[Prime[row[#]] &, {10}]] (* A192175 array *)
    Flatten[Table[ Prime[row[k][[n - k + 1]]], {n, 1, 11}, {k, 1, n}]] (* A192175 sequence *)
    (* Peter J. C. Moses, Jun 20 2011 *)

A093738 Number of pairs of consecutive prime (p,q) with q-p=6 and q < 10^n.

Original entry on oeis.org

0, 7, 44, 299, 1940, 13549, 99987, 768752, 6089791, 49392723, 408550278, 3435528229, 29289695650, 252672394234, 2201981901415, 19360330918473, 171550299264139, 1530609037414453
Offset: 1

Views

Author

Enoch Haga, Apr 15 2004

Keywords

Comments

Note that one has to be careful to distinguish between pairs of consecutive primes (p,q) with q-p = 6 (A031924), and pairs of primes (p,q) with q-p = 6 (A023201). Here we consider the former, whereas A080841 considers the latter. - N. J. A. Sloane, Mar 07 2021

Examples

			a(2) = 7 because there are 7 prime gaps of 6 below 10^2.
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[Count[Differences@ Prime@ Range[PrimePi[10^(# - 1) + 1], PrimePi[10^# - 1]], 6] &, 8] (* Michael De Vlieger, Apr 09 2021 *)
  • UBASIC
    20 N=1:dim T(34); 30 A=nxtprm(N); 40 N=A; 50 B=nxtprm(N); 60 D=B-A; 70 for x=2 to 34 step 2; 80 if D=X and B<10^2+1 then T(X)=T(X)+1; 90 next X; 100 if B>10^2+1 then 140; 110 B=A; 120 N=N+1; 130 goto 30; 140 for x=2 to 34 step 2; 150 print T(X);, 160 next (This program simultaneously finds values from 2 to 34 -- if gap=2 add 1-- adjust lines 80 and 100 for desired 10^n)

Extensions

a(10)-a(13) from Washington Bomfim, Jun 22 2012
a(14)-a(18) from S. Herzog's website added by Giovanni Resta, Aug 14 2018

A288021 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 4, and p1, p2 are in different decades.

Original entry on oeis.org

7, 19, 37, 67, 79, 97, 109, 127, 229, 277, 307, 349, 379, 397, 439, 457, 487, 499, 739, 757, 769, 859, 877, 907, 937, 967, 1009, 1087, 1279, 1297, 1429, 1447, 1489, 1549, 1567, 1579, 1597, 1609, 1867, 1999, 2137, 2239, 2269, 2347, 2377, 2389, 2437, 2539, 2617, 2659, 2689, 2707, 2749, 2797, 2857
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's or 9's.

Examples

			7 is in this sequence since pair (7,11) is the first with difference 4 spanning a multiple of 10.
		

Crossrefs

Programs

  • Mathematica
    a288021[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==4&]]
    a288021[3000] (* data *)

A288022 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 6, and p1, p2 are in different decades.

Original entry on oeis.org

47, 157, 167, 257, 367, 557, 587, 607, 647, 677, 727, 947, 977, 1097, 1117, 1187, 1217, 1367, 1657, 1747, 1777, 1907, 1987, 2207, 2287, 2417, 2467, 2677, 2837, 2897, 2957, 3307, 3407, 3607, 3617, 3637, 3727, 3797, 4007, 4357, 4457, 4507, 4597, 4657, 4937, 4987
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's.
Number of terms < 10^k: 0, 0, 1, 13, 81, 565, 4027, 30422, 237715, ... - Muniru A Asiru, Jan 09 2018

Examples

			47 is in the sequence since pair (47,53) is the first with difference 6 spanning a multiple of 10.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..20000], IsPrime);
    P1:=List(Filtered(Filtered(List([1..Length(P)-1],n->[P[n],P[n+1]]),i->i[2]-i[1]=6),j->j[1] mod 5=2),k->k[1]); # Muniru A Asiru, Jul 08 2017
  • Maple
    for n from 1 to 2000 do if [ithprime(n+1)-ithprime(n), ithprime(n) mod 5] = [6,2] then print(ithprime(n)); fi; od; # Muniru A Asiru, Jan 19 2018
  • Mathematica
    a288022[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==6&]]
    a288022[3000] (* data *)

A288024 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 8, and p1, p2 are in different decades.

Original entry on oeis.org

89, 359, 389, 449, 479, 683, 719, 743, 929, 983, 1109, 1163, 1193, 1373, 1439, 1523, 1559, 1733, 1823, 1979, 2003, 2153, 2213, 2243, 2273, 2459, 2609, 2663, 2699, 2843, 2879, 2909, 3209, 3449, 3623, 3719, 4289, 4349, 4583, 4943, 5189, 5399, 5573, 5693, 5783, 5813
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 3's or 9's.

Examples

			89 is in the sequence since pair (89,97) is the first with difference 8 spanning a multiple of 10.
		

Crossrefs

Programs

  • Mathematica
    a288024[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==8&]]
    a288024[6000] (* data *)
    Select[Partition[Prime[Range[800]],2,1],#[[2]]-#[[1]]==8&&IntegerDigits[#[[1]]][[-2]]!= IntegerDigits[ #[[2]]][[-2]]&][[;;,1]] (* Harvey P. Dale, Jan 09 2024 *)

A052158 Lower prime of a difference of 6 (G-minor-6 primes) between consecutive primes of 6k+1 form.

Original entry on oeis.org

31, 61, 73, 151, 157, 271, 331, 367, 373, 433, 541, 571, 601, 607, 727, 733, 751, 991, 1033, 1063, 1117, 1123, 1231, 1291, 1321, 1453, 1543, 1621, 1657, 1741, 1747, 1753, 1777, 1861, 1987, 2011, 2131, 2281, 2287, 2341, 2371, 2383, 2467, 2551, 2671, 2677
Offset: 1

Views

Author

Labos Elemer, Jan 25 2000

Keywords

Comments

The corresponding larger primes (G-major-6 primes) are also of the form 6k+1.

Examples

			a(1)=31 since a(1) + 6 = 37 is the next prime and 31 = 6*5 + 1.
		

Crossrefs

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[400]],2,1],Last[#]-First[#] == 6 && Mod[First[#],6]==1&]][[1]] (* Harvey P. Dale, Oct 01 2013 *)

Formula

A031924(n) == 1 (mod 6).
Previous Showing 31-40 of 59 results. Next