A051304
Number of 4-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 5, 780, 41545, 1442910, 39400305, 923889960, 19550316665, 384954289170, 7196416532305, 129495073447740, 2264887575116985, 38775513868485030, 653195404307491505, 10869004241198535120, 179171681947204584505, 2932562923651659410490, 47737465871974206925905
Offset: 0
-
[(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/(24): n in [0..50]]; // G. C. Greubel, Oct 07 2017
-
Table[(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
-
for(n=0,50, print1((16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, ", ")) \\ G. C. Greubel, Oct 07 2017
A051305
Number of 5-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 0, 543, 118629, 12564636, 907001550, 51751693161, 2527016053023, 110737868741742, 4489929936371880, 171944175793168779, 6309813148166785257, 224210698542088771968
Offset: 0
-
[(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/(120): n in [0..50]]; // G. C. Greubel, Oct 07 2017
-
Table[(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
-
for(n=0,50, print1((32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, ", ")) \\ G. C. Greubel, Oct 07 2017
A051306
Number of 6-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 0, 300, 233821, 78501094, 15532759830, 2213672795040, 254206334062527, 25146386270836578, 2235664320306737320, 183782806231396191820, 14248056393984957136593
Offset: 0
-
Table[(64^n - 45*48^n + 300*40^n - 135*36^n + 510*34^n - 198*33^n - 1499*32^n - 2700*30^n + 6615*28^n + 1215*27^n - 780*26^n + 3750*25^n - 6750*24^n - 8280*23^n + 3828*22^n - 12285*21^n + 19425*20^n + 31635*19^n - 30105*18^n - 34425*17^n + 24770*16^n + 13125*15^n - 3885*14^n + 390*13^n - 5670*12^n - 12485*11^n + 28575*10^n - 16560*9^n - 3435*8^n + 7868*7^n - 4995*6^n + 3800*5^n - 1301*4^n - 822*3^n + 668*2^n - 120)/6!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
A133800
Triangle read by rows in which row n gives number of ways to partition n labeled elements into k pie slices allowing the pie to be turned over (n >= 1, 1 <= k <= n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 6, 3, 1, 15, 25, 30, 12, 1, 31, 90, 195, 180, 60, 1, 63, 301, 1050, 1680, 1260, 360, 1, 127, 966, 5103, 12600, 15960, 10080, 2520, 1, 255, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 1, 511, 9330, 102315, 510300, 1369620
Offset: 1
Triangle begins:
1,
1, 1,
1, 3, 1,
1, 7, 6, 3,
1, 15, 25, 30, 12,
1, 31, 90, 195, 180, 60,
1, 63, 301, 1050, 1680, 1260, 360.
...
For row n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4 .. (1234)
k=4 .. k=3 ..k=2 . k=2 . k=1
(3)....(6)...(3)..(4)... (1)
-
A001710 := proc(n) if n < 2 then 1; else n!/2 ; fi ; end: A008277 := proc(n,k) combinat[stirling2](n,k) ; end: A133800 := proc(n,k) A008277(n,k)*A001710(k-1) ; end: for n from 1 to 10 do for k from 1 to n do printf("%d, ",A133800(n,k)) ; od: od: # R. J. Mathar, Jan 18 2008
-
A001710[n_] := If[n<2, 1, n!/2]; A008277[n_, k_] := StirlingS2[n, k]; A133800[n_, k_] := A008277[n, k]*A001710[k-1]; Table[A133800[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014, after R. J. Mathar *)
(* A (n >= 0, k >= 0)-based version: *)
A133800[n_, k_] := k! StirlingS2[n+1, k+1] / If[k>1, 2, 1];
Table[A133800[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 19 2017 *)
A051307
Number of 7-element proper antichains of an n-element set.
Original entry on oeis.org
0, 0, 0, 0, 0, 135, 329205, 365924948, 205640068950, 75013516525425, 20611869786684495, 4661763066154503606, 917701003163074793520, 163180081989646991509955, 26889766005753182579964345, 4182467653250525215771670424, 622388054953695081193665509610
Offset: 0
A059090
Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 15, 30, 30, 5, 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1, 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7
Offset: 0
1;
1, 1;
1, 3;
1, 7, 3, 1;
1, 15, 30, 30, 5;
1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1;
1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7;
- Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
- Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.
A134165
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 3) x = y.
Original entry on oeis.org
1, 3, 8, 24, 86, 348, 1478, 6324, 26846, 112668, 467798, 1925124, 7867406, 31980588, 129475718, 522603924, 2104600766, 8461122108, 33972973238, 136278002724, 546271650926
Offset: 0
a(2) = 8 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 1 {{1},{2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 2.
-
LinearRecurrence[{10,-35,50,-24},{1,3,8,24},30] (* Harvey P. Dale, Feb 29 2020 *)
A134168
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 3) x = y.
Original entry on oeis.org
1, 3, 9, 30, 111, 438, 1779, 7290, 29871, 121998, 496299, 2011650, 8129031, 32769558, 131850819, 529745610, 2126058591, 8525561118, 34166421339, 136858609170, 548013994551, 2193796224678, 8780408783859, 35137313082330, 140596298752911, 562526359448238, 2250528981434379, 9003386657325090
Offset: 0
a(2) = 9 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 2 {{1},{1,2}}, {{2},{1,2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 1.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
-
LinearRecurrence[{10, -35, 50, -24}, {1, 3, 9, 30}, 50] (* or *) Table[(1/2)*(4^n - 3^n + 3*2^n - 1), {n,0,50}] (* G. C. Greubel, May 30 2016 *)
A133789
Let P(A) denote the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, 1) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 2) x and y intersect but for which x is not a subset of y and y is not a subset of x.
Original entry on oeis.org
0, 1, 4, 16, 70, 316, 1414, 6196, 26590, 112156, 466774, 1923076, 7863310, 31972396, 129459334, 522571156, 2104535230, 8460991036, 33972711094, 136277478436, 546270602350, 2188566048076, 8764718254054, 35090241492916, 140455083984670, 562102715143516
Offset: 0
a(3) = 16 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we see that
{1} and {2},
{1} and {3},
{2} and {3},
{1} and {2,3},
{2} and {1,3},
{3} and {1,2}
are disjoint, while
{} and {1},
{} and {2},
{} and {3},
{} and {1,2},
{} and {1,3},
{} and {2,3},
{} and {1,2,3}
are disjoint and one is a subset of the other and
{1,2} and {1,3},
{1,2} and {2,3},
{1,3} and {2,3}
are intersecting, but neither is a subset of the other.
Also, through row 8 of Pascal's triangle the a(3)=16 even entries are 2 (so a(0)=0 and a(1)=1) then 4,6,4 (so a(2)=4) then 10,10 then 6,20,6 then 8,28,56,70,56,28,8. [_Aaron Meyerowitz_, Oct 29 2013]
Edited by
N. J. A. Sloane, Jan 20 2008 to incorporate suggestions from several contributors.
A134018
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x.
Original entry on oeis.org
0, 1, 3, 10, 45, 226, 1113, 5230, 23565, 102826, 438273, 1836550, 7601685, 31183426, 127084233, 515429470, 2083077405, 8396552026, 33779262993, 135696871990, 544528258725, 2183337968626, 8749031918553, 35043178292110, 140313885993645, 561679104393226
Offset: 0
a(3) = 10 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we have for case 0 {{},{1}}, {{},{2}}, {{},{3}}, {{},{1,2}}, {{},{1,3}}, {{},{2,3}}, {{},{1,2,3}} and we have for case 1 {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}.
-
LinearRecurrence[{10,-35,50,-24},{0,1,3,10},30] (* Harvey P. Dale, Dec 01 2017 *)
Comments