cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A051304 Number of 4-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 5, 780, 41545, 1442910, 39400305, 923889960, 19550316665, 384954289170, 7196416532305, 129495073447740, 2264887575116985, 38775513868485030, 653195404307491505, 10869004241198535120, 179171681947204584505, 2932562923651659410490, 47737465871974206925905
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/(24): n in [0..50]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,50, print1((16^n - 18*12^n + 60*10^n - 9*9^n - 102*8^n + 105*7^n - 90*6^n + 95*5^n - 31*4^n - 33*3^n + 28*2^n - 6)/4!, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = (1/4!) * (16^n -18*12^n +60*10^n -9*9^n -102*8^n +105*7^n -90*6^n +95*5^n -31*4^n -33*3^n +28*2^n -6).
G.f. x^4*( 5 +365*x -7935*x^2 +46885*x^3 -191420*x^4 +2285460*x^5 -14380560*x^6 +27216000*x^7 ) / ( (x-1) *(9*x-1) *(6*x-1) *(7*x-1) *(3*x-1) *(5*x-1) *(2*x-1) *(12*x-1) *(10*x-1) *(4*x-1) *(8*x-1) *(16*x-1) ). - R. J. Mathar, Jun 13 2013

Extensions

Terms a(16) onward added by G. C. Greubel, Oct 07 2017

A051305 Number of 5-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 543, 118629, 12564636, 907001550, 51751693161, 2527016053023, 110737868741742, 4489929936371880, 171944175793168779, 6309813148166785257, 224210698542088771968
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Magma
    [(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/(120): n in [0..50]]; // G. C. Greubel, Oct 07 2017
  • Mathematica
    Table[(32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,50, print1((32^n - 30*24^n + 150*20^n - 45*18^n + 85*17^n - 515*16^n -450*15^n + 1365*14^n + 390*13^n - 1680*12^n - 22*11^n + 1875*10^n - 1080*9^n - 685*8^n + 980*7^n - 669*6^n + 575*5^n - 195*4^n - 150*3^n + 124*2^n - 24)/5!, ", ")) \\ G. C. Greubel, Oct 07 2017
    

Formula

a(n) = (1/5!)*(32^n -30*24^n +150*20^n -45*18^n +85*17^n -515*16^n -450*15^n +1365*14^n +390*13^n -1680*12^n -22*11^n +1875*10^n -1080*9^n -685*8^n +980*7^n -669*6^n +575*5^n -195*4^n -150*3^n +124*2^n -24).

A051306 Number of 6-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 300, 233821, 78501094, 15532759830, 2213672795040, 254206334062527, 25146386270836578, 2235664320306737320, 183782806231396191820, 14248056393984957136593
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(64^n - 45*48^n + 300*40^n - 135*36^n + 510*34^n - 198*33^n - 1499*32^n - 2700*30^n + 6615*28^n + 1215*27^n - 780*26^n + 3750*25^n - 6750*24^n - 8280*23^n + 3828*22^n - 12285*21^n + 19425*20^n + 31635*19^n - 30105*18^n - 34425*17^n + 24770*16^n + 13125*15^n - 3885*14^n + 390*13^n - 5670*12^n - 12485*11^n + 28575*10^n - 16560*9^n - 3435*8^n + 7868*7^n - 4995*6^n + 3800*5^n - 1301*4^n - 822*3^n + 668*2^n - 120)/6!, {n, 0, 50}] (* G. C. Greubel, Oct 07 2017 *)

Formula

a(n) = (1/6!)*(64^n -45*48^n +300*40^n -135*36^n +510*34^n -198*33^n -1499*32^n -2700*30^n +6615*28^n +1215*27^n -780*26^n +3750*25^n -6750*24^n -8280*23^n +3828*22^n -12285*21^n +19425*20^n +31635*19^n -30105*18^n -34425*17^n +24770*16^n +13125*15^n -3885*14^n +390*13^n -5670*12^n -12485*11^n +28575*10^n -16560*9^n -3435*8^n +7868*7^n -4995*6^n +3800*5^n -1301*4^n -822*3^n +668*2^n -120).

A133800 Triangle read by rows in which row n gives number of ways to partition n labeled elements into k pie slices allowing the pie to be turned over (n >= 1, 1 <= k <= n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 6, 3, 1, 15, 25, 30, 12, 1, 31, 90, 195, 180, 60, 1, 63, 301, 1050, 1680, 1260, 360, 1, 127, 966, 5103, 12600, 15960, 10080, 2520, 1, 255, 3025, 23310, 83412, 158760, 166320, 90720, 20160, 1, 511, 9330, 102315, 510300, 1369620
Offset: 1

Views

Author

Barry Cipra and N. J. A. Sloane, Jan 17 2008

Keywords

Examples

			Triangle begins:
1,
1,  1,
1,  3,   1,
1,  7,   6,    3,
1, 15,  25,   30,   12,
1, 31,  90,  195,  180,   60,
1, 63, 301, 1050, 1680, 1260, 360.
...
For row n = 4 we have the following "pies":
. 1
./ \
2 . 3 . 12 .. 12 . 123
.\ / .. / \ .(..)..(..)
. 4 .. 3--4 . 34 .. 4 .. (1234)
k=4 .. k=3 ..k=2 . k=2 . k=1
(3)....(6)...(3)..(4)... (1)
		

Crossrefs

Row sums give A032262. Diagonals give A000225, A000392, A032263, A133799, A001710.

Programs

Formula

Take triangle of Stirling numbers of second kind (A008277) and multiply k-th column by A001710(k) (order of alternating group A_k).

Extensions

More terms from R. J. Mathar, Jan 18 2008

A051307 Number of 7-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 0, 0, 135, 329205, 365924948, 205640068950, 75013516525425, 20611869786684495, 4661763066154503606, 917701003163074793520, 163180081989646991509955, 26889766005753182579964345, 4182467653250525215771670424, 622388054953695081193665509610
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic

Keywords

Crossrefs

Formula

a(n) = 1/7! * (128^n -63*96^n +525*80^n -315*72^n +1785*68^n -1386*66^n +455*65^n -3486*64^n -9450*60^n +21315*56^n +8505*54^n -13650*52^n -5355*51^n +36750*50^n -5145*49^n -14805*48^n -57960*46^n -4725*45^n +45738*44^n +36120*43^n -191835*42^n +43050*41^n +74725*40^n -73710*39^n +333165*38^n +104895*37^n -73395*36^n -54390*35^n -354144*34^n -423192*33^n +383621*32^n +143220*31^n -292425*30^n +753855*29^n +181545*28^n -314685*27^n -114660*26^n -916125*25^n -268716*24^n +1998493*23^n +140833*22^n -2359350*21^n +458675*20^n +2147950*19^n -961758*18^n -1428000*17^n +933380*16^n +578175*15^n -614362*14^n +143052*13^n +45990*12^n -244860*11^n +356475*10^n -199521*9^n -12244*8^n +64778*7^n -40026*6^n +28035*5^n -9604*4^n -5292*3^n +4248*2^n -720).

A059090 Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 15, 30, 30, 5, 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1, 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 28 2000

Keywords

Comments

An antichain is called intersecting (or proper) antichain if every two members have a nonempty intersection. Row sums give the number of intersecting antichains on a labeled n-set or n-variable Boolean functions in the Post class F(7,2) or self-dual monotone Boolean functions of n+1 variables. Cf. A001206.

Examples

			1;
1, 1;
1, 3;
1, 7, 3, 1;
1, 15, 30, 30, 5;
1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1;
1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7;
		

References

  • Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
  • Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.

Crossrefs

Formula

T(n, 0)=1, T(n, 1)=2^n-1, T(n, 2)=A032263(n), T(n, 3)=A051303(n), T(n, 4)=A051304(n), T(n, 5)=A051305(n), T(n, 6)=A051306(n), T(n, 7)=A051307(n).

A134165 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 3) x = y.

Original entry on oeis.org

1, 3, 8, 24, 86, 348, 1478, 6324, 26846, 112668, 467798, 1925124, 7867406, 31980588, 129475718, 522603924, 2104600766, 8461122108, 33972973238, 136278002724, 546271650926
Offset: 0

Views

Author

Ross La Haye, Jan 12 2008

Keywords

Examples

			a(2) = 8 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 1 {{1},{2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{1,3,8,24},30] (* Harvey P. Dale, Feb 29 2020 *)

Formula

a(n) = (1/2)(4^n - 2*3^n + 5*2^n - 2) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + 2*StirlingS2(n+1,2) + 1.
G.f.: (1-7*x+13*x^2-x^3)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). [Colin Barker, Jul 30 2012]

A134168 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x, or 2) x and y are intersecting and for which either x is a proper subset of y or y is a proper subset of x, or 3) x = y.

Original entry on oeis.org

1, 3, 9, 30, 111, 438, 1779, 7290, 29871, 121998, 496299, 2011650, 8129031, 32769558, 131850819, 529745610, 2126058591, 8525561118, 34166421339, 136858609170, 548013994551, 2193796224678, 8780408783859, 35137313082330, 140596298752911, 562526359448238, 2250528981434379, 9003386657325090
Offset: 0

Views

Author

Ross La Haye, Jan 12 2008

Keywords

Examples

			a(2) = 9 because for P(A) = {{},{1},{2},{1,2}} we have for case 0 {{},{1}}, {{},{2}}, {{},{1,2}} and we have for case 2 {{1},{1,2}}, {{2},{1,2}} and we have for case 3 {{},{}}, {{1},{1}}, {{2},{2}}, {{1,2},{1,2}}. There are 0 {x,y} of P(A) in this example that fall under case 1.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -35, 50, -24}, {1, 3, 9, 30}, 50] (* or *) Table[(1/2)*(4^n - 3^n + 3*2^n - 1), {n,0,50}] (* G. C. Greubel, May 30 2016 *)

Formula

a(n) = (1/2)*(4^n - 3^n + 3*2^n - 1).
a(n) = 3*StirlingS2(n+1,4) +2*StirlingS2(n+1,3) +2*StirlingS2(n+1,2) +1.
G.f.: -(5*x^3 - 14*x^2 + 7*x - 1)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jul 30 2012

A133789 Let P(A) denote the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, 1) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 2) x and y intersect but for which x is not a subset of y and y is not a subset of x.

Original entry on oeis.org

0, 1, 4, 16, 70, 316, 1414, 6196, 26590, 112156, 466774, 1923076, 7863310, 31972396, 129459334, 522571156, 2104535230, 8460991036, 33972711094, 136277478436, 546270602350, 2188566048076, 8764718254054, 35090241492916, 140455083984670, 562102715143516
Offset: 0

Views

Author

Ross La Haye, Jan 03 2008, Jan 08 2008

Keywords

Comments

Also, number of even binomial coefficient in rows 0 to 2^n of Pascal's triangle. [Aaron Meyerowitz, Oct 29 2013]

Examples

			a(3) = 16 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we see that
{1} and {2},
{1} and {3},
{2} and {3},
{1} and {2,3},
{2} and {1,3},
{3} and {1,2}
are disjoint, while
{} and {1},
{} and {2},
{} and {3},
{} and {1,2},
{} and {1,3},
{} and {2,3},
{} and {1,2,3}
are disjoint and one is a subset of the other and
{1,2} and {1,3},
{1,2} and {2,3},
{1,3} and {2,3}
are intersecting, but neither is a subset of the other.
Also, through row 8 of Pascal's triangle the a(3)=16 even entries are 2 (so a(0)=0 and a(1)=1) then 4,6,4 (so a(2)=4) then 10,10 then  6,20,6 then 8,28,56,70,56,28,8. [_Aaron Meyerowitz_, Oct 29 2013]
		

Crossrefs

Formula

a(n) = (1/2)(4^n - 2*3^n + 3*2^n - 2).
O.g.f.: x*(1-6*x+11*x^2)/[(-1+x)*(-1+2*x)*(-1+3*x)*(-1+4*x)]. - R. J. Mathar, Jan 11 2008
a(n) = A084869(n)-1 = A016269(n-2)+2^n-1. - Vladeta Jovovic, Jan 04 2008, corrected by Eric Rowland, May 15 2017
a(n) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + StirlingS2(n+1,2). - Ross La Haye, Jan 11 2008
a(n) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,3) + StirlingS2(n+1,2). - Ross La Haye, Jan 11 2008
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). [Aaron Meyerowitz, Oct 29 2013]

Extensions

Edited by N. J. A. Sloane, Jan 20 2008 to incorporate suggestions from several contributors.

A134018 Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are intersecting but for which x is not a subset of y and y is not a subset of x.

Original entry on oeis.org

0, 1, 3, 10, 45, 226, 1113, 5230, 23565, 102826, 438273, 1836550, 7601685, 31183426, 127084233, 515429470, 2083077405, 8396552026, 33779262993, 135696871990, 544528258725, 2183337968626, 8749031918553, 35043178292110, 140313885993645, 561679104393226
Offset: 0

Views

Author

Ross La Haye, Jan 10 2008

Keywords

Examples

			a(3) = 10 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we have for case 0 {{},{1}}, {{},{2}}, {{},{3}}, {{},{1,2}}, {{},{1,3}}, {{},{2,3}}, {{},{1,2,3}} and we have for case 1 {{1,2},{1,3}}, {{1,2},{2,3}}, {{1,3},{2,3}}.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10,-35,50,-24},{0,1,3,10},30] (* Harvey P. Dale, Dec 01 2017 *)

Formula

a(n) = (1/2)(4^n - 3^(n+1) + 5*2^n - 3) = 3*StirlingS2(n+1,4) + StirlingS2(n+1,2).
G.f.: x*(1-7*x+15*x^2)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). [Colin Barker, Jul 29 2012]

Extensions

More terms from Harvey P. Dale, Dec 01 2017
Previous Showing 11-20 of 23 results. Next