cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A318754 Number T(n,k) of rooted trees with n nodes such that k equals the maximal number of subtrees extending from the same node and having the same number of nodes; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 3, 4, 1, 1, 0, 6, 9, 3, 1, 1, 0, 12, 22, 9, 3, 1, 1, 0, 25, 54, 23, 8, 3, 1, 1, 0, 51, 139, 60, 23, 8, 3, 1, 1, 0, 111, 346, 166, 61, 22, 8, 3, 1, 1, 0, 240, 892, 447, 167, 61, 22, 8, 3, 1, 1, 0, 533, 2290, 1219, 461, 168, 60, 22, 8, 3, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 02 2018

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k < n. T(n,k) = 0 for k >= n.

Examples

			Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   1,   1;
  0,   3,   4,   1,  1;
  0,   6,   9,   3,  1,  1;
  0,  12,  22,   9,  3,  1, 1;
  0,  25,  54,  23,  8,  3, 1, 1;
  0,  51, 139,  60, 23,  8, 3, 1, 1;
  0, 111, 346, 166, 61, 22, 8, 3, 1, 1;
		

Crossrefs

Columns k=0-10 give: A063524, A032305 (for n>1), A318817, A318818, A318819, A318820, A318821, A318822, A318823, A318824, A318825.
Row sums give A000081.
T(2n+2,n+1) give A255705.
Cf. A318753.

Programs

  • Maple
    g:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(g(i-1$2, k)+j-1, j)*g(n-i*j, i-1, k), j=0..min(k, n/i))))
        end:
    T:= (n, k)-> g(n-1$2, k) -`if`(k=0, 0, g(n-1$2, k-1)):
    seq(seq(T(n, k), k=0..n-1), n=1..14);
  • Mathematica
    g[n_, i_, k_] := g[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[g[i - 1, i - 1, k] + j - 1, j]*g[n - i*j, i - 1, k], {j, 0, Min[k, n/i]}]]];
    T[n_, k_] := g[n - 1, n - 1, k] - If[k == 0, 0, g[n - 1, n - 1, k - 1]];
    Table[T[n, k], {n, 1, 14}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 27 2019, after Alois P. Heinz *)

Formula

T(n,k) = A318753(n,k) - A318753(n,k-1) for k > 0, A(n,0) = A063524(n).

A298204 Number of unlabeled rooted trees with n nodes in which all outdegrees are either 0, 1, or 3.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 9, 16, 29, 55, 104, 200, 389, 763, 1507, 3002, 6010, 12102, 24484, 49751, 101475, 207723, 426542, 878451, 1813945, 3754918, 7790326, 16196629, 33739335, 70410401, 147187513, 308171861, 646188276, 1356847388, 2852809425, 6005542176
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2018

Keywords

Examples

			The a(7) = 9 trees: ((((((o)))))), ((((ooo)))), (((oo(o)))), ((oo((o)))), ((o(o)(o))), (oo(((o)))), (oo(ooo)), (o(o)((o))), ((o)(o)(o)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or n `if`(n<2, n, add(b(n-1$2, j), j=[1, 3])):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jan 30 2018
  • Mathematica
    multing[n_,k_]:=Binomial[n+k-1,k];
    a[n_]:=a[n]=If[n===1,1,Sum[Product[multing[a[x],Count[ptn,x]],{x,Union[ptn]}],{ptn,Select[IntegerPartitions[n-1],MemberQ[{1,3},Length[#]]&]}]];
    Table[a[n],{n,40}]
    (* Second program: *)
    b[n_, i_, v_] := b[n, i, v] = If[n == 0,
         If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0,
         If[n == v, 1, Sum[Binomial[a[i] + j - 1, j]*
         b[n - i*j, i - 1, v - j], {j, 0, Min[n/i, v]}]]]];
    a[n_] := If[n < 2, n, Sum[b[n - 1, n - 1, j], {j, {1, 3}}]];
    Array[a, 40] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A301345 Regular triangle where T(n,k) is the number of transitive rooted trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 2, 4, 1, 0, 0, 0, 0, 3, 4, 5, 1, 0, 0, 0, 0, 2, 6, 6, 6, 1, 0, 0, 0, 0, 1, 6, 10, 9, 7, 1, 0, 0, 0, 0, 1, 5, 12, 16, 12, 8, 1, 0, 0, 0, 0, 0, 4, 13, 22, 23, 16, 9, 1, 0, 0, 0, 0, 0, 3, 14, 27, 36, 32, 20, 10, 1, 0, 0, 0, 0, 0, 2, 11
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1   0
0   1   0
0   1   1   0
0   0   2   1   0
0   0   1   3   1   0
0   0   1   2   4   1   0
0   0   0   3   4   5   1   0
0   0   0   2   6   6   6   1   0
0   0   0   1   6  10   9   7   1   0
0   0   0   1   5  12  16  12   8   1   0
The T(9,5) = 6 transitive rooted trees: (o(o)(oo(o))), (o((oo))(oo)), (oo(o)(o(o))), (o(o)(o)(oo)), (ooo(o)((o))), (oo(o)(o)(o)).
		

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    trat[n_]:=Select[rut[n],Complement[Union@@#,#]==={}&];
    Table[Length[Select[trat[n],Count[#,{},{-2}]===k&]],{n,15},{k,n}]

A295461 Number of unlabeled rooted trees with 2n + 1 nodes in which all outdegrees are even.

Original entry on oeis.org

1, 1, 2, 5, 12, 33, 91, 264, 780, 2365, 7274, 22727, 71784, 229094, 737215, 2390072, 7798020, 25587218, 84377881, 279499063, 929556155, 3102767833, 10390936382, 34903331506, 117564309276, 396994228503, 1343716120550, 4557952756658, 15491856887741
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2018

Keywords

Examples

			The a(3) = 5 trees: (o(o(oo))), (o(oooo)), ((oo)(oo)), (ooo(oo)), (oooooo).
		

Crossrefs

Programs

  • Mathematica
    erut[n_]:=erut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[erut/@c]]]/@Select[IntegerPartitions[n-1],EvenQ[Length[#]]&]];
    Table[Length[erut[n]],{n,1,30,2}]

A297571 Matula-Goebel numbers of fully unbalanced rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 39, 41, 47, 55, 58, 62, 65, 66, 78, 79, 82, 87, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 145, 155, 158, 165, 167, 174, 179, 186, 195, 202, 205, 211, 218, 226, 235, 237, 246, 254, 257, 271, 274
Offset: 1

Views

Author

Gus Wiseman, Dec 31 2017

Keywords

Comments

An unlabeled rooted tree is fully unbalanced if either (1) it is a single node, or (2a) every branch has a different number of nodes and (2b) every branch is fully unbalanced also. The number of fully unbalanced trees with n nodes is A032305(n).
The first finitary number (A276625) not in this sequence is 143.

Examples

			Sequence of fully unbalanced trees begins:
   1 o
   2 (o)
   3 ((o))
   5 (((o)))
   6 (o(o))
  10 (o((o)))
  11 ((((o))))
  13 ((o(o)))
  15 ((o)((o)))
  22 (o(((o))))
  26 (o(o(o)))
  29 ((o((o))))
  30 (o(o)((o)))
  31 (((((o)))))
  33 ((o)(((o))))
  39 ((o)(o(o)))
  41 (((o(o))))
  47 (((o)((o))))
		

Crossrefs

Programs

  • Mathematica
    nn=2000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>k*MGweight[PrimePi[p]]]]];
    imbalQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[UnsameQ@@MGweight/@m,And@@imbalQ/@m]]];
    Select[Range[nn],imbalQ]

A297791 Number of series-reduced leaf-balanced rooted trees with n nodes. Number of orderless same-trees with n nodes and all leaves equal to 1.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 5, 1, 3, 3, 4, 3, 5, 3, 6, 4, 6, 3, 12, 3, 10, 7, 9, 6, 12, 9, 13, 16, 14, 22, 22, 24, 21, 24, 28, 14, 32, 15, 42, 20, 60, 27, 84, 44, 100, 59, 113, 74, 116, 85, 110, 97, 96, 113, 106, 149, 147, 234, 235, 377, 380, 580, 576, 838
Offset: 1

Views

Author

Gus Wiseman, Jan 06 2018

Keywords

Comments

An unlabeled rooted tree is leaf-balanced if all branches from the same root have the same number of leaves. It is series-reduced if all positive out-degrees are greater than one.

Examples

			The a(13) = 5 trees: (((oo)(oo))(oooo)), ((ooooo)(ooooo)), ((ooo)(ooo)(ooo)), ((oo)(oo)(oo)(oo)), (oooooooooooo).
		

Crossrefs

Programs

  • Mathematica
    alltim[n_]:=alltim[n]=If[n===1,{{}},Join@@Function[c,Select[Union[Sort/@Tuples[alltim/@c]],And[SameQ@@(Count[#,{},{0,Infinity}]&/@#),FreeQ[#,{_}]]&]]/@IntegerPartitions[n-1]];
    Table[Length[alltim[n]],{n,20}]
  • PARI
    lista(nn) = my(k, r, t, u, w=vector(nn, i, vector(i))); w[1][1]=1; for(s=2, nn, fordiv(s, d, if(dw[i][d], [d..nn]); forvec(v=vector(s/d, i, [1, #u]), if(nn>=r=1+sum(i=1, #v, u[v[i]]), k=1; t=1; for(i=2, #v, if(v[i]==v[i-1], k++, t*=binomial(w[u[v[i-1]]][d]+k-1, k); k=1)); w[r][s]+=t*binomial(w[u[v[#v]]][d]+k-1, k)), 1)))); vector(nn, i, vecsum(w[i])); \\ Jinyuan Wang, Feb 25 2025

Extensions

a(51) onward from Robert G. Wilson v, Jan 07 2018

A301343 Regular triangle where T(n,k) is the number of planted achiral (or generalized Bethe) trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 2, 1, 1, 0, 1, 3, 2, 2, 1, 1, 1, 0, 1, 4, 2, 4, 1, 2, 1, 1, 0, 1, 4, 3, 4, 1, 3, 1, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 0, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1  0
1  1  0
1  1  1  0
1  2  1  1  0
1  2  1  1  1  0
1  3  2  2  1  1  0
1  3  2  2  1  1  1  0
1  4  2  4  1  2  1  1  0
1  4  3  4  1  3  1  1  1  0
1  5  3  6  2  4  1  2  1  1  0
The T(9,4) = 4 planted achiral trees: (((((oooo))))), ((((oo)(oo)))), (((oo))((oo))), ((o)(o)(o)(o)).
		

Crossrefs

Row sums are A003238. A version without the zeroes or first row is A214575.

Programs

  • Mathematica
    tri[n_,k_]:=If[k===1,1,If[k>=n,0,Sum[tri[n-k,d],{d,Divisors[k]}]]];
    Table[tri[n,k],{n,10},{k,n}]

Formula

T(n,1) = 1, T(n,k) = 0 if n <= k, otherwise T(n,k) = Sum_{d|k} T(n - k, d).

A298304 Number of rooted trees on n nodes with strictly thinning limbs.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 12, 19, 31, 51, 85, 144, 245, 417, 712, 1221, 2091, 3600, 6216, 10763, 18691, 32546, 56782, 99271, 173849, 304877, 535412, 941385, 1657069, 2919930, 5150546, 9093894, 16071634, 28428838, 50331137, 89181251, 158145233, 280650225, 498410197
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2018

Keywords

Comments

An unlabeled rooted tree has strictly thinning limbs if its outdegrees are strictly decreasing from root to leaves.

Examples

			The a(7) = 7 trees: (oo(o(o))), (o(o)(oo)), (ooo(oo)), ((o)(o)(o)), (oo(o)(o)), (oooo(o)), (oooooo).
		

Crossrefs

Programs

  • Mathematica
    stinctQ[t_]:=And@@Cases[t,b_List:>Length[b]>Max@@Length/@b,{0,Infinity}];
    strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],stinctQ]];
    Table[Length[strut[n]],{n,20}]

Extensions

a(26)-a(40) from Alois P. Heinz, Jan 17 2018

A298533 Number of unlabeled rooted trees with n vertices such that every branch of the root has the same number of leaves.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 31, 64, 144, 333, 808, 2004, 5109, 13199, 34601, 91539, 244307, 656346, 1774212, 4820356, 13157591, 36060811, 99198470, 273790194, 757971757, 2104222594, 5856496542, 16338140048, 45678276507, 127964625782, 359155302204, 1009790944307
Offset: 1

Views

Author

Gus Wiseman, Jan 20 2018

Keywords

Examples

			The a(5) = 8 trees: ((((o)))), (((oo))), ((o(o))), ((ooo)), (o((o))), ((o)(o)), (oo(o)), (oooo)
		

Crossrefs

Programs

  • Mathematica
    rut[n_]:=rut[n]=If[n===1,{{}},Join@@Function[c,Union[Sort/@Tuples[rut/@c]]]/@IntegerPartitions[n-1]];
    Table[Length[Select[rut[n],SameQ@@(Count[#,{},{0,Infinity}]&/@#)&]],{n,15}]
  • PARI
    \\ here R is A055277 as vector of polynomials
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1  + exp( sum(i=1, j, 1/i * subst( subst( A + x * O(x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
    seq(n)={my(M=Mat(apply(p->Colrev(p,n), R(n-1)))); concat([1],sum(i=2, #M, EulerT(M[i,])))} \\ Andrew Howroyd, May 20 2018

Extensions

Terms a(19) and beyond from Andrew Howroyd, May 20 2018

A213920 Number of rooted trees with n nodes such that no more than two subtrees corresponding to children of any node have the same number of nodes.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 15, 34, 79, 190, 457, 1132, 2823, 7126, 18136, 46541, 120103, 312109, 815012, 2137755, 5632399, 14895684, 39519502, 105198371, 280815067, 751490363, 2016142768, 5420945437, 14604580683, 39425557103, 106618273626, 288792927325, 783516425820
Offset: 0

Views

Author

Alois P. Heinz, Mar 05 2013

Keywords

Comments

Coincides with A248869 up to a(9) = 190.
a(n+1)/a(n) tends to 2.845331... - Vaclav Kotesovec, Jun 04 2019

Examples

			:  o  :  o  :    o   o  :    o     o   o  :
:     :  |  :   / \  |  :    |    / \  |  :
:     :  o  :  o   o o  :    o   o   o o  :
:     :     :        |  :   / \  |     |  :
:     :     :        o  :  o   o o     o  :
:     :     :           :              |  :
: n=1 : n=2 :  n=3      :  n=4         o  :
:.....:.....:...........:.................:
:   o     o       o     o     o     o   o :
:   |     |      / \   / \   / \   /|\  | :
:   o     o     o   o o   o o   o o o o o :
:   |    / \   / \    |     |   | |     | :
:   o   o   o o   o   o     o   o o     o :
:  / \  |             |                 | :
: o   o o             o                 o :
:                                       | :
: n=5                                   o :
:.........................................:
		

Crossrefs

Column k=2 of A318753.

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(g((i-1)$2)+j-1, j)*g(n-i*j, i-1), j=0..min(2, n/i))))
        end:
    a:= n-> g((n-1)$2):
    seq(a(n), n=0..40);
  • Mathematica
    g[n_, i_] := g[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[g[i-1, i-1]+j-1, j]*g[n-i*j, i-1], {j, 0, Min[2, n/i]}]]]; a[n_] := g[n-1, n-1]; Table[ a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2017, translated from Maple *)
Previous Showing 11-20 of 53 results. Next