cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A033440 Number of edges in 8-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 35, 43, 52, 62, 73, 85, 98, 112, 126, 141, 157, 174, 192, 211, 231, 252, 273, 295, 318, 342, 367, 393, 420, 448, 476, 505, 535, 566, 598, 631, 665, 700, 735, 771, 808, 846, 885, 925
Offset: 0

Views

Author

Keywords

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 + 1) (x^4 + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{0,0,1,3,6,10,15,21,28,35},50] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(n) = round( (7/16)*n(n-2) ) +0 or -1 depending on n: if there is k such 8k+4<=n<=8k+6 then a(n) = floor( (7/16)*n*(n-2)) otherwise a(n) = round( (7/16)*n(n-2)). E.g. because 8*2+4<=21<=8*2+6 a(n) = floor((7/16)*21*19) = floor(174, 5625)=174. - Benoit Cloitre, Jan 17 2002
a(n) = Sum_{k=0..n} A168181(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x+1)*(x^2+1)*(x^4+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(7*i/8). - Wesley Ivan Hurt, Sep 12 2017

A033442 Number of edges in 10-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 54, 64, 75, 87, 100, 114, 129, 145, 162, 180, 198, 217, 237, 258, 280, 303, 327, 352, 378, 405, 432, 460, 489, 519, 550, 582, 615, 649, 684, 720, 756, 793, 831, 870, 910, 951, 993, 1036, 1080, 1125, 1170, 1216, 1263
Offset: 0

Views

Author

Keywords

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (x^2 + x + 1) (x^6 + x^3 + 1)/((x - 1)^3 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)

Formula

a(n) = Sum_{k=0..n} A168184(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x^2+x+1)*(x^6+x^3+1)/((x-1)^3*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(9*i/10). - Wesley Ivan Hurt, Sep 12 2017

Extensions

More terms from Vincenzo Librandi, Oct 20 2013

A033443 Number of edges in 11-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 65, 76, 88, 101, 115, 130, 146, 163, 181, 200, 220, 240, 261, 283, 306, 330, 355, 381, 408, 436, 465, 495, 525, 556, 588, 621, 655, 690, 726, 763, 801, 840, 880, 920, 961, 1003, 1046, 1090, 1135, 1181, 1228, 1276
Offset: 0

Views

Author

Keywords

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)

Formula

a(n) = Sum_{k=0..n} A145568(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)/((x-1)^3*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(10*i/11). - Wesley Ivan Hurt, Sep 12 2017

Extensions

More terms from Vincenzo Librandi, Oct 20 2013

A279169 a(n) = floor( 4*n^2/5 ).

Original entry on oeis.org

0, 0, 3, 7, 12, 20, 28, 39, 51, 64, 80, 96, 115, 135, 156, 180, 204, 231, 259, 288, 320, 352, 387, 423, 460, 500, 540, 583, 627, 672, 720, 768, 819, 871, 924, 980, 1036, 1095, 1155, 1216, 1280, 1344, 1411, 1479, 1548, 1620, 1692, 1767, 1843, 1920, 2000, 2080, 2163, 2247
Offset: 0

Views

Author

Bruno Berselli, Dec 07 2016

Keywords

Crossrefs

Cf. A090223: floor(4*n/5).
Subsequence of A008728, A014601, A118015, A131242.
Cf. similar sequences with closed form floor(k*n^2/5): A118015 (k=1), A033437 (k=2), A184535 (k=3).

Programs

  • Magma
    [4*n^2 div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n^2/5], {n, 0, 60}]
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,3,7,12,20,28},60] (* Harvey P. Dale, Nov 07 2020 *)
  • PARI
    vector(60, n, n--; floor(4*n^2/5))
    
  • Python
    [int(4*n**2/5) for n in range(60)]
    
  • Sage
    [floor(4*n^2/5) for n in range(60)]
    

Formula

O.g.f.: x^2*(3 + x + x^2 + 3*x^3)/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
a(5*m+r) = 4*m*(5*m + 2*r) + a(r), where m >= 0 and 0 <= r < 5. Example: for m=4 and r=3, a(5*4+3) = a(23) = 4*4*(5*4 + 2*3) + a(3) = 416 + 7 = 423.
a(n) = A118015(2*n) = A008728(4*n+2) = A131242(4*n+4) = A014601(floor(2*n^2/5)).
Sum_{n>=2} 1/a(n) = Pi^2/120 + sqrt(29 - 62/sqrt(5))*Pi/8 + 5/16. - Amiram Eldar, Sep 26 2022

A227353 Number of lattice points in the closed region bounded by the graphs of y = 3*x/5, x = n, and y = 0, excluding points on the x-axis.

Original entry on oeis.org

0, 1, 2, 4, 7, 10, 14, 18, 23, 29, 35, 42, 49, 57, 66, 75, 85, 95, 106, 118, 130, 143, 156, 170, 185, 200, 216, 232, 249, 267, 285, 304, 323, 343, 364, 385, 407, 429, 452, 476, 500, 525, 550, 576, 603, 630, 658, 686, 715, 745, 775, 806, 837, 869, 902, 935
Offset: 1

Views

Author

Clark Kimberling, Jul 08 2013

Keywords

Comments

See A227347.

Examples

			a(1) = floor(3/5) = 0; a(2) = floor(6/5) = 1; a(3) = a(2) + floor(9/5) = 2; a(4) = a(3) + floor(12/5) = 4.
		

Crossrefs

Cf. A057355 (first differences).

Programs

  • Mathematica
    z = 150; r = 3/5; k = 1; a[n_] := Sum[Floor[r*x^k], {x, 1, n}]; t = Table[a[n], {n, 1, z}]
  • PARI
    a(n) = (3*n^2-n)\10; \\ Kevin Ryde, Mar 15 2022
    
  • Python
    a = lambda n: n*(3*n-1)//10 # Gennady Eremin, Mar 20 2022

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
G.f.: (x*(1 + x^2 + x^3))/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
According to Wolfram Alpha, a(n) = floor(Re(E(n^2|Pi))) where E(x|m) is the incomplete elliptic integral of the second kind. - Kritsada Moomuang, Jan 28 2022
a(n) = a(n-1) + floor(3*n/5), n > 1. - Gennady Eremin, Mar 15 2022
a(n) = floor(n*(3*n-1)/10). - Kevin Ryde, Mar 15 2022
Previous Showing 11-15 of 15 results.