A343200
Expansion of Product_{k>=1} (1 + x^k)^binomial(k+3,3).
Original entry on oeis.org
1, 4, 16, 64, 221, 736, 2338, 7132, 21093, 60652, 170172, 467140, 1257571, 3325824, 8654576, 22189340, 56116043, 140122760, 345769094, 843827436, 2038017983, 4874329024, 11550814704, 27134195608, 63215468883, 146120097736, 335227455982, 763592477104, 1727482413548
Offset: 0
-
nmax = 28; CoefficientList[Series[Product[(1 + x^k)^Binomial[k + 3, 3], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d Binomial[d + 3, 3], {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 28}]
A174002
a(n) = n*binomial(n+4, 4).
Original entry on oeis.org
0, 5, 30, 105, 280, 630, 1260, 2310, 3960, 6435, 10010, 15015, 21840, 30940, 42840, 58140, 77520, 101745, 131670, 168245, 212520, 265650, 328900, 403650, 491400, 593775, 712530, 849555, 1006880, 1186680, 1391280, 1623160, 1884960, 2179485
Offset: 0
-
[ (n^5+10*n^4+35*n^3+50*n^2+24*n)/24: n in [0..40] ]; // Vincenzo Librandi, Dec 28 2010
-
Table[n Binomial[n + 4, 4], {n, 0, 40}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 5, 30, 105, 280, 630}, 40] (* Harvey P. Dale, Dec 03 2011 *)
A363174
Array read by rows: T(n,k) is the number of triangles inside a regular n-gon formed by intersecting line segments, considering all configurations of 3 line segments from k distinct vertices, with n >= 3, 3 <= k <= 6.
Original entry on oeis.org
1, 0, 0, 0, 4, 4, 0, 0, 10, 20, 5, 0, 20, 60, 30, 0, 35, 140, 105, 7, 56, 280, 280, 16, 84, 504, 630, 84, 120, 840, 1260, 180, 165, 1320, 2310, 462, 220, 1980, 3960, 796, 286, 2860, 6435, 1716, 364, 4004, 10010, 2856, 455, 5460, 15015, 5005, 560, 7280, 21840, 7744
Offset: 3
Array begins:
n\k| 3 4 5 6
---+---------------------------
3 | 1, 0, 0, 0;
4 | 4, 4, 0, 0;
5 | 10, 20, 5, 0;
6 | 20, 60, 30, 0;
7 | 35, 140, 105, 7;
8 | 56, 280, 280, 16;
9 | 84, 504, 630, 84;
10 | 120, 840, 1260, 180;
...
- Paolo Xausa, Table of n, a(n) for n = 3..10002 (rows 3..2502 of array, flattened).
- Bjorn Poonen and Michael Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG], 1995-2006.
- Steven E. Sommars and Tim Sommars, The Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon, Journal of Integer Sequences, Vol. 1 (1998), Article 98.1.5.
- Paolo Xausa, Illustration of T(9,6).
- Sequences formed by drawing all diagonals in regular polygon
-
A363174list[rowmax_]:=Module[{d},d[m_,n_]:=Boole[Divisible[n,m]];Table[Binomial[n,k]If[4<=k<=5,k,1]-If[k==6&&EvenQ[n],((1/8n^2-9/8n+7/4)d[2,n]+3/4d[4,n]+(6n-106/3)d[6,n]-33d[12,n]-36d[18,n]-24d[24,n]+96d[30,n]+72d[42,n]+264d[60,n]+96d[84,n]+48d[90,n]+96d[120,n]+48d[210,n])n,0],{n,3,rowmax},{k,3,6}]];A363174list[20]
A121547
Fourth slice along the 1-2-plane in the cube a(m,n,o) = a(m-1,n,o) + a(m,n-1,o) + a(m,n,o-1) for which the first slice is Pascal's triangle (slice read by antidiagonals).
Original entry on oeis.org
0, 0, 1, 0, 4, 4, 0, 10, 20, 10, 0, 20, 60, 60, 20, 0, 35, 140, 210, 140, 35, 0, 56, 280, 560, 560, 280, 56, 0, 84, 504, 1260, 1680, 1260, 504, 84, 0, 120, 840, 2520, 4200, 4200, 2520, 840, 120, 0, 165, 1320, 4620, 9240, 11550, 9240, 4620, 1320, 165, 0, 220, 1980, 7920, 18480, 27720, 27720, 18480, 7920, 1980, 220
Offset: 0
The second row is 1, 4, 10, 20, 35, 56, 84, 120, 165, 220 = A000292, i.e., Tetrahedral (or pyramidal) numbers: binomial(n+2,3) = n(n+1)(n+2)/6 (core).
The third row is 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860 = A033488 = n*(n+1)*(n+2)*(n+3)/6.
The main diagonal is 0, 4, 60, 560, 4200, 27720, 168168, 960960, 5250960, 27713400 = {0} U A002803*4.
Triangle starts:
0
0, 1
0, 4, 4
0, 10, 20, 10
0, 20, 60, 60, 20
0, 35, 140, 210, 140, 35
0, 56, 280, 560, 560, 280, 56
0, 84, 504, 1260, 1680, 1260, 504, 84
-
T:=(n, k)->binomial(n+3, 3)*binomial(n, k): seq(print(seq(T(n-1, k-1), k=0..n)), n=0..10); # Georg Fischer, Jul 31 2023
a(55)-a(56) corrected and more terms from
Georg Fischer, Jul 31 2023
A291980
Triangle read by rows, T(n, k) = n!*[t^k] ([x^n] exp(x*t)/(1 - log(1+x))) for 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 4, 8, 6, 4, 1, 14, 20, 20, 10, 5, 1, 38, 84, 60, 40, 15, 6, 1, 216, 266, 294, 140, 70, 21, 7, 1, 600, 1728, 1064, 784, 280, 112, 28, 8, 1, 6240, 5400, 7776, 3192, 1764, 504, 168, 36, 9, 1
Offset: 0
Triangle starts:
[1]
[1, 1]
[1, 2, 1]
[2, 3, 3, 1]
[4, 8, 6, 4, 1]
[14, 20, 20, 10, 5, 1]
[38, 84, 60, 40, 15, 6, 1]
[216, 266, 294, 140, 70, 21, 7, 1]
[600, 1728, 1064, 784, 280, 112, 28, 8, 1]
-
T_row := proc(n) exp(x*t)/(1 - log(1+x)): series(%, x, n+1):
seq(n!*coeff(coeff(%,x,n), t, k), k=0..n) end:
seq(T_row(n), n=0..10);
-
T[n_, k_] := Binomial[n, n - k]*Sum[j!*StirlingS1[n - k, j], {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, May 12 2024 *)
Comments