cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A226119 Numbers such that sigma(phi(tau(n)))=tau(phi(sigma(n))).

Original entry on oeis.org

1, 6, 36, 64, 105, 114, 135, 1980, 2016, 3072, 5120, 7056, 7840, 9216, 16320, 18720, 18900, 23100, 23622, 24003, 25536, 26088, 26733, 28455, 29078, 29337, 29700, 29760, 30597, 30894, 30912, 31155, 31496, 31758, 32361, 33782, 34020, 34286, 36000, 36036, 36099
Offset: 1

Views

Author

Paolo P. Lava, May 27 2013

Keywords

Examples

			29337 is in the sequence since:
sigma(29337)=49152 -> phi(49152)=16384 -> tau(16384)=15.
tau(29337)=16 -> phi(16)=8 -> sigma(8)=15.
		

Crossrefs

Programs

  • Maple
    with(numtheory); A226119:=proc(q) local n;
    for n from 1 to q do
    if sigma(phi(tau(n)))=tau(phi(sigma(n))) then print(n);
    fi; od; end: A226119(10^6);
  • Mathematica
    Select[Range[36099], DivisorSigma[1, EulerPhi[DivisorSigma[0, #]]] == DivisorSigma[0, EulerPhi[DivisorSigma[1, #]]] &] (* T. D. Noe, May 28 2013 *)

A227927 Numbers n such that phi(sigma(k))/sigma(phi(k)) < phi(sigma(n))/sigma(phi(n)) for all k < n and n is the smallest positive integer with this property.

Original entry on oeis.org

1, 2, 36, 144, 576, 3600, 14400, 921600, 1040400, 4161600, 8643600, 34574400, 266342400, 700131600, 2800526400, 179233689600, 202338032400, 809352129600
Offset: 1

Views

Author

Vladimir Letsko, Oct 09 2013

Keywords

Comments

All known terms excluding a(2) are perfect squares.

Examples

			36 is in the sequence because phi(sigma(36))/sigma(phi(36)) = 18/7 and for all k < 36 phi(sigma(k))/sigma(phi(k)) < 18/7.
		

Crossrefs

Programs

  • Maple
    s:= n -> numtheory:-phi(numtheory:-sigma(n))/numtheory:-sigma(numtheory:-phi(n)):
      a,na,A[1],sA[1]:=1,1,1,1:
    1;for i from 2 do ss:=s(i): if ss>a then na:=na+1:A[na]:=ss:a:=ss:sA[na]:=i:print(sA[na]) fi od:

A229238 Numbers k such that phi(sigma(k))/sigma(phi(k)) = 2.

Original entry on oeis.org

2, 4, 16, 18, 64, 100, 450, 1458, 4096, 4624, 28900, 36450, 62500, 65536, 130050, 262144, 281250, 1062882, 1336336, 3334800, 7064400, 8352100, 10156800, 10534050, 18062500, 21193200, 22781250, 26572050, 37584450, 39062500, 48944016, 81281250, 124411716
Offset: 1

Views

Author

Vladimir Letsko, Sep 17 2013

Keywords

Comments

2^j is in the sequence if and only if 2^{j+1}-1 is a Mersenne prime. In other words 2^j is the "even part" of a perfect number. Thus we have some generalization of perfect numbers.
Odd prime divisors of the first 19 terms of a(n) are exclusively 3, 5, 17, i.e., Fermat's primes, but 3334800 = 2^4*3*5^2*7*397.

Examples

			18 is in the sequence because phi(sigma(18)) = phi(39) = 24 = 2*sigma(6) = 2*sigma(phi(18)).
		

Crossrefs

Programs

  • Maple
    s:=n->phi(sigma(n))/sigma(phi(n));
    for i to 9000000 do if s(i)=2 then print(i) fi od:
  • PARI
    isok(n) = (eulerphi(sigma(n)) == 2*sigma(eulerphi(n))); \\ Michel Marcus, Sep 23 2013

Extensions

Extra term 4624 and more terms from Michel Marcus, Sep 23 2013

A370689 Numerator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 3, 7, 1, 7, 9, 7, 14, 3, 15, 1, 31, 1, 39, 5, 7, 3, 9, 15, 7, 7, 39, 7, 7, 5, 9, 31, 21, 31, 15, 7, 91, 39, 5, 31, 15, 7, 24, 7, 5, 3, 9, 31, 8, 7, 21, 10, 49, 39, 15, 15, 91, 7, 45, 31, 28, 9, 91, 1, 31, 7, 9, 7, 21, 5, 6, 5, 65, 91, 3, 91, 21
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Examples

			Fractions begin with: 1, 1/2, 3/2, 1/2, 7/2, 3/4, 3, 7/8, 1, 7/6, 9/2, 7/12, ...
		

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930, A289336, A073858 (positions of 1's), A289412, A370690 (denominators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Numerator
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

Formula

Let f(n) = a(n)/A370690(n) = A062402(n)/A062401(n).
Formulas from De Koninck and Luca (2007):
lim sup_{n->oo} f(n)/log_2(n)^2 = exp(2*gamma) (A091724).
lim inf_{n->oo} f(n)/log_2(n)^2 = delta exists, and exp(-gamma)/40 <= delta <= 2*exp(-gamma).
Sum_{k=1..n} f(k) = c * exp(2*gamma) * log_3(n)^2 * n + O(n * log_3(n)^(3/2)), where c = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... .

A370690 Denominator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 8, 1, 6, 2, 12, 3, 2, 8, 2, 6, 2, 8, 4, 4, 2, 2, 16, 5, 3, 16, 6, 1, 8, 2, 36, 8, 18, 4, 18, 18, 16, 2, 24, 2, 8, 5, 4, 2, 2, 2, 60, 3, 10, 8, 7, 9, 32, 4, 8, 32, 3, 8, 48, 5, 4, 48, 2, 6, 8, 2, 4, 8, 4, 1, 8, 12, 36, 2, 48, 4, 4, 4, 20, 11
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Comments

See A370689 for details.

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930 (positions of 1's), A073858, A289336, A289412, A370689 (numerators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Denominator
  • PARI
    a(n) = {my(f = factor(n)); denominator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

A092590 a(n) = A065395(A000040(n)); values of commutator of sigma and phi function at prime number arguments.

Original entry on oeis.org

-1, 1, 5, 8, 14, 22, 25, 31, 28, 48, 56, 73, 78, 76, 56, 80, 74, 138, 112, 120, 159, 136, 102, 156, 210, 185, 168, 126, 240, 212, 248, 212, 226, 240, 226, 300, 314, 283, 204, 252, 222, 474, 296, 412, 339, 388, 472, 360, 270, 472, 378, 368, 634, 396, 427, 316, 404, 592, 534, 628, 436, 434, 582, 480, 684, 456, 700, 836
Offset: 1

Views

Author

Labos Elemer, Mar 03 2004

Keywords

Comments

The sequence differs from A065394 since it is not monotonic.

Examples

			a(1) = sigma(phi(2))- phi(sigma(2)) = sigma(1)-phi(3) = 1-2 = -1.
		

Crossrefs

Programs

  • Magma
    [DivisorSigma(1,EulerPhi(p))-EulerPhi(DivisorSigma(1,p)): p in PrimesUpTo(400)]; // Bruno Berselli, Oct 20 2015
  • Mathematica
    Table[DivisorSigma[1, p-1] - EulerPhi[p+1], {p, Prime[Range[100]]}] (* Amiram Eldar, Jun 09 2024 *)

Formula

a(n) = sigma(prime(n)-1) - phi(prime(n)+1) = A008332(n) - A008331(n). - Amiram Eldar, Jun 09 2024

A132793 Numbers n such that sigma(phi(n))-phi(n) = phi(sigma(n)-n).

Original entry on oeis.org

3, 70, 138, 792, 924, 1692, 1932, 2124, 2250, 2988, 3852, 30936, 112644, 189252, 240120, 261660, 263928, 338760, 364308, 379470, 390432, 504216, 529110, 785568, 862290, 917700, 979596, 1022310, 1124220, 1404270, 1434072, 2004372, 2526000
Offset: 1

Views

Author

Keywords

Comments

Used sigma(n)-n, namely the sum of proper divisors.

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local i,j,k; for i from 1 by 1 to n do j:=sigma(phi(i))-phi(i); k:=phi(sigma(i)-i); if j=k then print(i); fi; od; end: P(150000);
  • Mathematica
    Select[Range[2600000],DivisorSigma[1,EulerPhi[#]]-EulerPhi[#]==EulerPhi[ DivisorSigma[1,#]-#]&] (* Harvey P. Dale, Mar 24 2016 *)
  • PARI
    isA132793(n)={ if( sigma(eulerphi(n))-eulerphi(n) == eulerphi(sigma(n)-n), 1, 0 ) ; }
    { for(n=2,6000000, if(isA132793(n), print1(n, ", ") ; ) ; ) ; } \\ R. J. Mathar, Nov 11 2007

Extensions

More terms from R. J. Mathar, Nov 11 2007
Invalid first term removed by Donovan Johnson, Sep 11 2013

A292208 Composite numbers k such that sigma(cototient(k)) = cototient(sigma(k) - k) + cototient(k); that is, f(g(k)) = g(f(k)) where f = A001065 and g = A051953.

Original entry on oeis.org

4, 16, 35, 65, 77, 78, 114, 146, 161, 185, 209, 221, 256, 335, 341, 371, 377, 437, 485, 515, 595, 611, 626, 644, 654, 671, 707, 731, 767, 779, 805, 851, 899, 917, 965, 1007, 1067, 1115, 1157, 1211, 1247, 1271, 1309, 1337, 1385, 1397, 1463, 1495, 1529, 1535, 1577, 1631, 1645, 1691, 1771
Offset: 1

Views

Author

Altug Alkan, Sep 11 2017

Keywords

Comments

Luca and Pomerance proved that arithmetic functions f(g(n)) and g(f(n)) are independent where f = A001065 and g = A051953. For related details and theorems see Luca & Pomerance link.

Examples

			35 = 5*7 is a term because A001065(A051953(35)) = A051953(A001065(35)).
		

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1800, Function[n, And[CompositeQ@ n, DivisorSigma[1, n - EulerPhi@ n] == (n - EulerPhi@ n) + # - EulerPhi@ # &[DivisorSigma[1, n] - n]]]] (* Michael De Vlieger, Sep 12 2017 *)
  • PARI
    a001065(n) = sigma(n)-n;
    a051953(n) = n-eulerphi(n);
    lista(nn) = forcomposite(n=4, nn, if(a051953(a001065(n))==a001065(a051953(n)), print1(n, ", ")));

A378315 Odd numbers k such that d(phi(k)) = phi(d(k)), where d=A000005 and phi=A000010.

Original entry on oeis.org

1, 15230439315, 18887708385, 74989937295, 78103226565, 86031400455, 114958521405, 179883837315, 210096608085, 367588711035, 418094581905, 461441147895, 590648954805, 649146021615, 685787041485, 836850895335, 874197762165, 990695282031, 996070731201, 1002913997085, 1016370465201, 1029306324501, 1029869788311, 1039854060045, 1043905592457
Offset: 1

Views

Author

Max Alekseyev, Jan 09 2025

Keywords

Comments

For n > 1, we have A001222(a(n)) >= 9. The smallest a(n) with A001222(a(n)) = 9 is a(65) = 1244586078645.

Crossrefs

Subsequence of A078148.

A058652 Squarefree n such that sigma(phi(n)) = phi(sigma(n)).

Original entry on oeis.org

1, 29262, 114630, 160986, 179562, 252978, 502878, 528954, 780258, 908070, 1080906, 1826454, 2460786, 2870142, 3934686, 5086722, 5493030, 6001206, 6183078, 6621270, 6668634, 8808234, 9298110, 9752190, 10479282, 11707518, 12263334, 12928254, 13513278
Offset: 1

Views

Author

Robert G. Wilson v, Dec 26 2000

Keywords

Crossrefs

Cf. A033632.

Programs

  • Mathematica
    Select[ Range[ 10^7 ], DivisorSigma[ 1, EulerPhi[ # ] ] == EulerPhi[ DivisorSigma[ 1, # ] ] && Union[ Transpose[ FactorInteger[ # ] ] [ [ 2 ] ] ] == {1} & ]

Extensions

Prepended missing a(1)=1, Donovan Johnson, Mar 03 2012.
Previous Showing 21-30 of 38 results. Next