A375148
Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+2)).
Original entry on oeis.org
1, 1, 2, 1, 1, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 0, 1, 1, 1, 3, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 2, 2, 0, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 0, 2, 1, 2, 1, 4, 1, 2, 0, 0, 1, 3, 1, 0, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 0, 1, 0, 3, 2, 1, 1, 0, 2, 2, 1, 4, 0, 0
Offset: 0
-
my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+2))))
-
my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^3*((1-x^(7*k-3))*(1-x^(7*k-4)))^2/(1-x^k)))
A378007
Square table read by descending antidiagonals: T(n,k) = A378006(k*n+1,k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 0, 2, 0, 0, 2, 1, 1, 1, 0, 4, 0, 1, 0, 3, 0, 1, 1, 1, 4, 6, 2, 6, 2, 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 4, 10, 4, 6, 4, 6, 2, 4, 2, 2, 1, 1
Offset: 0
Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 2, 0, 2, 2, 2, 0, 4, ...
1, 1, 2, 1, 4, 2, 0, 4, 6, 0, ...
1, 1, 0, 2, 1, 2, 0, 2, 0, 4, ...
1, 1, 2, 2, 0, 1, 6, 0, 6, 4, ...
1, 1, 1, 0, 0, 2, 0, 4, 0, 0, ...
1, 1, 2, 3, 4, 2, 6, 2, 0, 4, ...
1, 1, 0, 2, 0, 2, 0, 0, 1, 4, ...
1, 1, 1, 0, 4, 3, 0, 0, 6, 1, ...
1, 1, 2, 2, 0, 0, 3, 4, 0, 0, ...
1, 1, 2, 2, 0, 2, 6, 3, 0, 4, ...
Write w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2.
Column k = 1: 1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + 1/7^s + 1/8^s + 1/9^s + 1/10^s + 1/11^s + ...;
Column k = 2: 1 + 1/3^s + 1/5^s + 1/7^s + 1/9^s + 1/11^s + 1/13^s + 1/15^s + 1/17^s + 1/19^s + 1/21^s + ...;
Column k = 3: (1 + 1/2^s + 1/4^s + 1/5^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + ...) = 1 + 1/4^s + 2/7^s + 2/13^s + 1/16^s + 2/19^s + 1/25^s + 2/28^s + 2/31^s + ...;
Column k = 4: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...) = 1 + 2/5^s + 1/9^s + 2/13^s + 2/17^s + 3/25^s + 2/29^s + 2/37^s + 2/41^s + ...;
Column k = 5: (1 + 1/2^s + 1/3^s + 1/4^s + ...)*(1 + i/2^s - i/3^s - 1/4^s + ...)*(1 - 1/2^s - 1/3^s + 1/4^s + ...)*(1 - i/2^s + i/3^s - 1/4^s + ...) = 1 + 4/11^s + 1/16^s + 4/31^s + 4/41^s + ...;
Column k = 6: (1 + 1/5^s + 1/7^s + 1/11^s + ...)*(1 - 1/5^s + 1/7^s - 1/11^s + ...) = 1 + 2/7^s + 2/13^s + 2/19^s + 1/25^s + 1/31^s + 2/37^s + 2/43^s + 3/49^s + 2/61^s + ...;
Column k = 7: (1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + ...)*(1 + w/2^s + (w+1)/3^s - (w+1)/4^s - w/5^s - 1/6^s + ...)*(1 - (w+1)/2^s + w/3^s + w/4^s - (w+1)/5^s + 1/6^s + ...)*(1 + 1/2^s - 1/3^s + 1/4^s - 1/5^s - 1/6^s + ...)*(1 + w/2^s - (w+1)/3^s - (w+1)/4^s + w/5^s + 1/6^s + ...)*(1 - (w+1)/2^s - w/3^s + w/4^s + (w+1)/5^s - 1/6^s + ...) = 1 + 2/8^s + 6/29^s + 6/43^s + 3/64^s + 6/71^s + ...;
Column k = 8: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 + 1/3^s - 1/5^s - 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...)*(1 - 1/3^s - 1/5^s + 1/7^s + ...) = 1 + 2/9^s + 4/17^s + 2/25^s + 4/41^s + 2/49^s + 4/73^s + 3/81^s + ...;
Column k = 9: (1 + 1/2^s + 1/4^s + 1/5^s + 1/7^s + 1/8^s + ...)*(1 + (w+1)/2^s + w/4^s - w/5^s - (w+1)/7^s - 1/8^s + ...)*(1 + w/2^s - (w+1)/4^s - (w+1)/5^s + w/7^s + 1/8^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + 1/7^s - 1/8^s + ...)*(1 - (w+1)/2^s + w/4^s + w/5^s - (w+1)/7^s + 1/8^s + ...)*(1 - w/2^s - (w+1)/4^s + (w+1)/5^s + w/7^s - 1/8^s + ...) = 1 + 6/19^s + 6/37^s + 1/64^s + 6/73^s + ...;
Column k = 10: (1 + 1/3^s + 1/7^s + 1/9^s + ...)*(1 + i/3^s - i/7^s - 1/9^s + ...)*(1 - 1/3^s - 1/7^s + 1/9^s + ...)*(1 - i/3^s + i/7^s - 1/9^s + ...) = 1 + 4/11^s + 4/31^s + 4/41^s + 4/61^s + 4/71^s + 1/81^s + 4/101^s + ...
-
A378007(n,k) = {
my(f = factor(k*n+1), res = 1); for(i=1, #f~, my(d = znorder(Mod(f[i,1],k)));
if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
res;}
A045833
Expansion of eta(q^9)^3 / eta(q^3) in powers of q.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0
Offset: 0
G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 2*q^19 + q^25 + 2*q^28 + 2*q^31 + ...
-
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^9]^3 / QPochhammer[ q^3], {q, 0, n}]; (* Michael Somos, Feb 22 2015 *)
f[p_, e_] := If[Mod[p, 3] == 1, e + 1, (1 + (-1)^e)/2]; f[3, e_] := 0; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100, 0] (* Amiram Eldar, Oct 13 2022 *)
-
{a(n) = local(A, p, e); if( n<0, 0, A=factor(n); prod(k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p!=3, if( p%3==1, e+1, !(e%2))))))}; \\ Michael Somos, May 25 2005
-
{a(n) = local(A); if( (n<1) || (n%3!=1), 0, n = (n-1)/3; A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / eta(x + A), n))}; \\ Michael Somos, May 25 2005
A106402
Expansion of eta(q^3)^9 / eta(q)^3 in powers of q.
Original entry on oeis.org
1, 3, 9, 13, 24, 27, 50, 51, 81, 72, 120, 117, 170, 150, 216, 205, 288, 243, 362, 312, 450, 360, 528, 459, 601, 510, 729, 650, 840, 648, 962, 819, 1080, 864, 1200, 1053, 1370, 1086, 1530, 1224, 1680, 1350, 1850, 1560, 1944, 1584, 2208, 1845, 2451, 1803, 2592
Offset: 1
G.f. = q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + 51*q^8 + ...
- George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001). See p. 314, Eq. (14.2.14).
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vaclav Kotesovec)
- Jonathan M. Borwein and Peter B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012). See page 697.
- Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
- Hossein Movasati and Younes Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv preprint arXiv:1603.09411 [math.AG], 2016-2021.
- Michael Somos, Index to Yves Martin's list of 74 multiplicative eta-quotients and their A-numbers, 2016.
- Liuquan Wang, Explicit Formulas for Partition Pairs and Triples with 3-Cores, arXiv:1507.03099 [math.NT], 2015.
-
A := Basis( ModularForms( Gamma1(3), 3), 52); A[2]; /* Michael Somos, May 18 2015 */
-
a[ n_] := If[ n < 1, 0, DivisorSum[ n, #^2 KroneckerSymbol[ n/#, 3] &]]; (* Michael Somos, Jul 19 2012 *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3]^3 / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
nmax = 40; Rest[CoefficientList[Series[x * Product[(1 - x^(3*k))^9 / (1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
-
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^9 / eta(x + A)^3, n))};
-
{a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( n/d, 3)))};
-
{a(n) = my(A, p, e, u); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; u = kronecker(-3, p); ((p^2)^(e+1) - u^(e+1)) / (p^2 - u)))};
-
a(n) = sumdiv(n, d, ((d % 3) == 1)*(n/d)^2) - sumdiv(n, d, ((d % 3)== 2)*(n/d)^2); \\ Michel Marcus, Jul 14 2015
A374900
Expansion of Sum_{k in Z} x^k / (1 - x^(7*k+1)).
Original entry on oeis.org
1, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 4, 2, 2, 2, 0, 2, 2, 3, 4, 2, 0, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 0, 2, 2, 0, 2, 2, 2, 3, 2, 0, 2, 2, 4, 0, 2, 2, 2, 2, 2, 3, 2, 0, 2, 4, 2, 2, 0, 0, 2, 2, 2, 4, 2, 0, 2, 2, 2, 2, 2, 0, 2, 4, 4, 2, 2, 0, 2, 2, 2, 2, 2
Offset: 0
-
my(N=110, x='x+O('x^N)); Vec(sum(k=-N, N, x^k/(1-x^(7*k+1))))
-
my(N=110, x='x+O('x^N)); Vec(prod(k=1, N, (1-x^(7*k))^2*(1-x^(7*k-2))*(1-x^(7*k-5))/((1-x^(7*k-1))*(1-x^(7*k-6)))^2))
A123477
Expansion of (1 - b(q)) / 3 in powers of q where b(q) is a cubic AGM theta function.
Original entry on oeis.org
1, 0, -2, 1, 0, 0, 2, 0, -2, 0, 0, -2, 2, 0, 0, 1, 0, 0, 2, 0, -4, 0, 0, 0, 1, 0, -2, 2, 0, 0, 2, 0, 0, 0, 0, -2, 2, 0, -4, 0, 0, 0, 2, 0, 0, 0, 0, -2, 3, 0, 0, 2, 0, 0, 0, 0, -4, 0, 0, 0, 2, 0, -4, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, -2, 2, 0, 0, 2, 0, -2, 0, 0, -4, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0
Offset: 1
G.f. = q - 2*q^3 + q^4 + 2*q^7 - 2*q^9 - 2*q^12 + 2*q^13 + q^16 + 2*q^19 + ...
-
A123477 := proc(n)
local a,pe,p,e;
a := 1;
for pe in ifactors(n)[2] do
p := op(1,pe) ;
e := op(2,pe) ;
if modp(p,6) = 1 then
a := a*(e+1) ;
elif modp(p,6) in {2,5} then
a := a*(1+(-1)^e)/2 ;
elif e > 0 then
a := -2*a ;
end if;
end do:
a ;
end proc:
seq(A123477(n),n=1..100) ; # R. J. Mathar, Feb 22 2021
-
a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, -3, 1, -1, 3, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* Michael Somos, Dec 10 2017 *)
-
{a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, -3, 1, -1, 3, 1, -1] [d%9+1]))};
-
{a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, p%6==1, e+1, !(e%2))))};
A130539
Expansion of q^(-1/3) * a(q) * b(q) * c(q) / 3 in powers of q where a(), b(), c() are cubic AGM theta functions.
Original entry on oeis.org
1, 4, -13, 0, -1, 16, 11, 0, 25, -52, -46, 0, 47, 0, -22, 0, 120, -4, 0, 0, -121, 64, -109, 0, -97, 44, 131, 0, 0, 0, 13, 0, 167, 100, -37, 0, -214, -208, 0, 0, 121, -184, 146, 0, -143, 0, 251, 0, 0, 188, 59, 0, -118, 0, 299, 0, -168, -88, -325, 0, -313
Offset: 0
G.f. = 1 + 4*x - 13*x^2 - x^4 + 16*x^5 + 11*x^6 + 25*x^8 - 52*x^9 - 46*x^10 + ...
G.f. = q + 4*q^4 - 13*q^7 - q^13 + 16*q^16 + 11*q^19 + 25*q^25 - 52*q^28 - ...
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^2 QPochhammer[ x^3] (QPochhammer[ x]^3 + 9 x QPochhammer[ x^9]^3), {x, 0, n}]; (* Michael Somos, Oct 20 2015 *)
-
{a(n) = my(A, p, e, x, y, a0, a1); n = 3*n + 1; if( n<1, 0, A=factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 0, if( p%3==2, if( e%2, 0, p^e), for( x=1, sqrtint(4*p\27), if( issquare(4*p - 27*x^2, &y), break)); y = y^2 - p*2; a0=1; a1=y; for( i=2, e, x=y*a1 - p^2*a0; a0=a1; a1=x); a1))))};
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^3 + A) * (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3), n))};
A261426
Expansion of f(-x^3)^3 * phi(x^6) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, 1, 2, 0, 2, 1, 4, 2, 5, 2, 6, 2, 6, 0, 4, 4, 7, 2, 4, 0, 6, 1, 8, 4, 4, 4, 10, 2, 8, 2, 12, 4, 8, 5, 6, 0, 14, 2, 8, 2, 11, 6, 6, 4, 8, 2, 8, 4, 8, 6, 14, 0, 6, 0, 12, 6, 15, 4, 14, 2, 14, 4, 8, 8, 12, 7, 14, 0, 12, 2, 16, 10, 8, 4, 10, 6, 14, 0, 16, 4, 16
Offset: 0
G.f. = 1 + x + 2*x^2 + 2*x^4 + x^5 + 4*x^6 + 2*x^7 + 5*x^8 + 2*x^9 + ...
G.f. = q + q^4 + 2*q^7 + 2*q^13 + q^16 + 4*q^19 + 2*q^22 + 5*q^25 + ...
-
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^3 EllipticTheta[ 3, 0, x^6] / QPochhammer[ x], {x, 0, n}];
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 * eta(x^12 + A)^5 / (eta(x + A) * eta(x^6 + A)^2 * eta(x^24 + A)^2), n))};
A081622
Number of 6-core partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 5, 9, 10, 12, 12, 14, 20, 20, 21, 23, 24, 24, 32, 29, 35, 36, 44, 47, 38, 47, 49, 52, 55, 58, 59, 64, 66, 71, 70, 78, 79, 88, 87, 90, 85, 87, 111, 104, 102, 107, 112, 113, 121, 113, 130, 130, 148, 153, 132, 147, 149, 156, 162, 149, 167, 160, 178, 180
Offset: 0
1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 5*x^6 + 9*x^7 + 10*x^8 + 12*x^9 + ...
q^35 + q^59 + 2*q^83 + 3*q^107 + 5*q^131 + 7*q^155 + 5*q^179 + 9*q^203 + ...
-
{a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^(6*k) + x * O(x^n))^6 / (1 - x^k)), n))}
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^6 / eta(x + A), n))}
A112298
Expansion of (a(q) - 3*a(q^2) + 2*a(q^4)) / 6 in powers of q where a() is a cubic AGM theta function.
Original entry on oeis.org
1, -3, 1, 3, 0, -3, 2, -3, 1, 0, 0, 3, 2, -6, 0, 3, 0, -3, 2, 0, 2, 0, 0, -3, 1, -6, 1, 6, 0, 0, 2, -3, 0, 0, 0, 3, 2, -6, 2, 0, 0, -6, 2, 0, 0, 0, 0, 3, 3, -3, 0, 6, 0, -3, 0, -6, 2, 0, 0, 0, 2, -6, 2, 3, 0, 0, 2, 0, 0, 0, 0, -3, 2, -6, 1, 6, 0, -6, 2, 0, 1, 0, 0, 6, 0, -6, 0, 0, 0, 0, 4, 0, 2, 0, 0, -3, 2, -9, 0, 3, 0, 0, 2, -6, 0
Offset: 1
G.f. = q - 3*q^2 + q^3 + 3*q^4 - 3*q^6 + 2*q^7 - 3*q^8 + q^9 + 3*q^12 + ...
-
A := Basis( ModularForms( Gamma1(12), 1), 106); A[2] - 3*A[3] + A[4] + 3*A[5]; /* Michael Somos, Jan 17 2015 */
-
a[ n_] := SeriesCoefficient[ q QPochhammer[ q, q^2]^3 QPochhammer[ -q^6, q^6]^3 EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, 0, q^(3/2)] / (2 q^(3/8)), {q, 0, n}]; (* Michael Somos, Jan 17 2015 *)
a[ n_] := If[ n < 1, 0, DivisorSum[ n, JacobiSymbol[ -3, n/#] {1, -2, 1, 0}[[Mod[#, 4, 1]]] &]]; (* Michael Somos, Jan 17 2015 *)
-
{a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-3, n/d)*[0, 1, -2, 1][d%4 + 1]))};
-
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^12 + A))^3/ (eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^6 + A)), n))};
Comments