cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A033848 Numbers whose prime factors are 2 and 11.

Original entry on oeis.org

22, 44, 88, 176, 242, 352, 484, 704, 968, 1408, 1936, 2662, 2816, 3872, 5324, 5632, 7744, 10648, 11264, 15488, 21296, 22528, 29282, 30976, 42592, 45056, 58564, 61952, 85184, 90112, 117128, 123904, 170368, 180224, 234256, 247808, 322102
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that phi(k)/k = 5/11. - Michel Marcus, Sep 22 2012

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a033848 n = a033848_list !! (n-1)
    a033848_list = f (singleton (2*11)) where
       f s = m : f (insert (2*m) $ insert (11*m) s') where
         (m,s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 13 2011
  • Maple
    N:= 10^6: # to get all terms <= N
    S:= {seq(seq(2^i*11^j, i=1..ilog2(floor(N/11^j))),j=1..floor(log[11](N/2)))}:
    sort(convert(S,list)); # Robert Israel, Oct 26 2017
  • Mathematica
    Select[Range[10^6], FactorInteger[#][[All, 1]] == {2, 11} &] (* Michael De Vlieger, Oct 26 2017 *)
    Sort[Flatten[Table[Table[2^j 11^k, {j, 1, 8}], {k, 1, 8}]]] (* Vincenzo Librandi, Oct 27 2017 *)

Formula

A143201(a(n)) = 10. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/10. - Amiram Eldar, Dec 22 2020

A288162 Numbers whose prime factors are 2 and 13.

Original entry on oeis.org

26, 52, 104, 208, 338, 416, 676, 832, 1352, 1664, 2704, 3328, 4394, 5408, 6656, 8788, 10816, 13312, 17576, 21632, 26624, 35152, 43264, 53248, 57122, 70304, 86528, 106496, 114244, 140608, 173056, 212992, 228488, 281216, 346112, 425984, 456976, 562432, 692224, 742586, 851968, 913952
Offset: 1

Views

Author

Bernard Schott, Jun 06 2017

Keywords

Comments

Numbers k such that phi(k)/k = 6/13.

Crossrefs

Programs

  • Magma
    [n:n in [1..100000] | Set(PrimeDivisors(n)) eq {2,13}];  // Marius A. Burtea, May 10 2019
  • Mathematica
    Select[Range[920000],FactorInteger[#][[All,1]]=={2,13}&] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    is(n) = factor(n)[, 1]~==[2, 13] \\ Felix Fröhlich, Jun 06 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(n=1,logint(lim\2,13), t=13^n; while((t<<=1)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jun 11 2017
    

Formula

a(n) = 26 * A107326(n). - David A. Corneth, Jun 06 2017
Sum_{n>=1} 1/a(n) = 1/12. - Amiram Eldar, Dec 22 2020

A343300 a(n) is p1^1 + p2^2 + ... + pk^k where {p1,p2,...,pk} are the distinct prime factors in ascending order in the prime factorization of n.

Original entry on oeis.org

0, 2, 3, 2, 5, 11, 7, 2, 3, 27, 11, 11, 13, 51, 28, 2, 17, 11, 19, 27, 52, 123, 23, 11, 5, 171, 3, 51, 29, 136, 31, 2, 124, 291, 54, 11, 37, 363, 172, 27, 41, 354, 43, 123, 28, 531, 47, 11, 7, 27, 292, 171, 53, 11, 126, 51, 364, 843, 59, 136, 61, 963, 52, 2, 174, 1342, 67, 291, 532, 370, 71, 11, 73
Offset: 1

Views

Author

Giorgos Kalogeropoulos, Apr 11 2021

Keywords

Comments

From Bernard Schott, May 07 2021: (Start)
a(n) depends only on prime factors of n (see formulas).
Primes are fixed points of this sequence.
Terms are in increasing order in A344023. (End)

Examples

			a(60) = 136 because the distinct prime factors of 60 are {2, 3, 5} and 2^1 + 3^2 + 5^3 = 136.
		

Crossrefs

Cf. A027748, A344023 (terms ordered).

Programs

  • Maple
    a:= n-> (l-> add(l[i]^i, i=1..nops(l)))(sort(map(i-> i[1], ifactors(n)[2]))):
    seq(a(n), n=1..73);  # Alois P. Heinz, Sep 19 2024
  • Mathematica
    {0}~Join~Table[Total[(a=First/@FactorInteger[k])^Range@Length@a],{k, 2, 100}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1]^k); \\ Michel Marcus, Apr 11 2021

Formula

a(p^k) = p for p prime and k>=1.
From Bernard Schott, May 07 2021: (Start)
a(A033845(n)) = 11;
a(A033846(n)) = 27;
a(A033847(n)) = 51;
a(A033848(n)) = 123;
a(A033849(n)) = 28;
a(A033850(n)) = 52;
a(A033851(n)) = 54;
a(A288162(n)) = 171. (End)
Previous Showing 11-13 of 13 results.