cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A074724 Highest power of 3 dividing F(4n) where F(k) is the k-th Fibonacci number.

Original entry on oeis.org

3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 81, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 81, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3, 243, 3, 3, 9, 3, 3, 9, 3, 3, 27, 3, 3, 9, 3, 3, 9, 3, 3
Offset: 1

Views

Author

Benoit Cloitre, Sep 04 2002

Keywords

Comments

If m == 1, 2 or 3 (mod 4) then F(m) is not divisible by 3.

Crossrefs

Programs

  • Mathematica
    Table[3^IntegerExponent[Fibonacci[4n],3],{n,100}] (* Harvey P. Dale, Jun 03 2012 *)
  • PARI
    a(n) = 3^valuation(fibonacci(4*n), 3); \\ Michel Marcus, May 13 2022

Formula

If k == 1 or 2 (mod 3) then a(3^m*k) = 3^(m+1) for m>=0.
a(n) = A038500(A033888(n)). - Amiram Eldar, May 13 2022
a(n) = 3^A051064(n) (conjectured). - Michel Marcus, May 17 2022
Conjecture: a(n) = (sigma(3*n) - sigma(n))/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). Equivalently, a(n) = A088838(n) - A074724(n). - Peter Bala, Jun 10 2022

A099922 a(n) = F(4n) - 2n, where F(n) = Fibonacci numbers A000045.

Original entry on oeis.org

1, 17, 138, 979, 6755, 46356, 317797, 2178293, 14930334, 102334135, 701408711, 4807526952, 32951280073, 225851433689, 1548008755890, 10610209857691, 72723460248107, 498454011879228, 3416454622906669, 23416728348467645
Offset: 1

Views

Author

Ralf Stephan, Nov 01 2004

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 54.

Crossrefs

Equals A033888(n) - 2n. Partial sums of A081071. Bisection of A054452.

Programs

  • Mathematica
    Rest[CoefficientList[Series[x*(1+8x+x^2)/((1-x)^2*(1-7x+x^2)), {x, 0, 20}], x]] (* Georg Fischer, May 24 2019 *)
  • PARI
    Vec(x*(1 + 8*x + x^2) / ((1 - x)^2*(1 - 7*x + x^2)) + O(x^25)) \\ Colin Barker, May 25 2019

Formula

G.f.: x*(1+8*x+x^2)/((1-x)^2 * (1-7*x+x^2)). [Corrected for offset by Georg Fischer, May 24 2019]
a(n) = Sum_{k=1..n} Lucas(2k-1)^2.
From Colin Barker, May 25 2019: (Start)
a(n) = (-((7-3*sqrt(5))/2)^n + ((7+3*sqrt(5))/2)^n)/sqrt(5) - 2*n.
a(n) = 9*a(n-1) - 16*a(n-2) + 9*a(n-3) - a(n-4) for n>4.
(End)

A269500 a(n) = Fibonacci(10*n).

Original entry on oeis.org

0, 55, 6765, 832040, 102334155, 12586269025, 1548008755920, 190392490709135, 23416728348467685, 2880067194370816120, 354224848179261915075, 43566776258854844738105, 5358359254990966640871840, 659034621587630041982498215, 81055900096023504197206408605
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 03 2016

Keywords

Comments

More generally, the ordinary generating function for the Fibonacci(k*n) is F(k)*x/(1 - L(k)*x + (-1)^k*x^2), where F(k) is the k-th Fibonacci number (A000045), L(k) is the k-th Lucas number (A000032), or (phi^k - (-1/phi)^k)*x/(sqrt(5)*(1 - (phi^k + (-1/phi)^k)*x + (-1)^k*x^2)), where phi is the golden ratio (A001622).

Crossrefs

Cf. similar sequences of the form Fibonacci(k*n): A000045 (k = 1), A001906 (k = 2), A014445 (k = 3), A033888 (k = 4), A102312 (k = 5), A134492 (k = 6), A134498 (k = 7), A138473 (k = 8), A138590 (k = 9), this sequence (k = 10), A167398 (k = 11), A214855 (k = 15).
Cf. A000032 (Lucas numbers), A001622 (golden ratio).

Programs

  • Mathematica
    Fibonacci[10Range[0, 14]]
    FullSimplify[Table[(((1 + Sqrt[5])/2)^(10 n) - (2/(1 + Sqrt[5]))^(10 n))/Sqrt[5], {n, 0, 12}]]
    LinearRecurrence[{123, -1}, {0, 55}, 15]
  • PARI
    a(n) = fibonacci(10*n); \\ Michel Marcus, Mar 03 2016
    
  • PARI
    concat(0, Vec(55*x/(1-123*x+x^2) + O(x^100))) \\ Altug Alkan, Mar 04 2016

Formula

G.f.: 55*x/(1 - 123*x + x^2).
a(n) = 123*a(n-1) - a(n-2).
a(n) = A000045(10*n).
Lim_{n -> infinity} a(n + 1)/a(n) = phi^10 = 122.9918693812442…

A081074 Fibonacci(4n)-3, or Fibonacci(2n-2)*Lucas(2n+2).

Original entry on oeis.org

0, 18, 141, 984, 6762, 46365, 317808, 2178306, 14930349, 102334152, 701408730, 4807526973, 32951280096, 225851433714, 1548008755917, 10610209857720, 72723460248138, 498454011879261, 3416454622906704, 23416728348467682
Offset: 1

Views

Author

R. K. Guy, Mar 04 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers).

Programs

  • Magma
    [Fibonacci(4*n)-3: n in [1..50]]; // Vincenzo Librandi, Apr 20 2011
  • Maple
    with(combinat): for n from 1 to 40 do printf(`%d,`,fibonacci(4*n)-3) od: # James Sellers, Mar 05 2003
  • Mathematica
    Fibonacci[4Range[25]]-3 (* or *)
    LinearRecurrence[{8,-8,1},{0,18,141},25] (* Paolo Xausa, Jan 07 2024 *)

Formula

a(n) = 8a(n-1) - 8a(n-2) + a(n-3).
G.f.: 3*x^2*(-6+x) / ( (x-1)*(x^2-7*x+1) ). a(n) = A033888(n)-3. - R. J. Mathar, Sep 03 2010

Extensions

More terms from James Sellers, Mar 05 2003

A114182 F(4n) - 2n - 1 where F(n) = Fibonacci numbers. Also, the floor of the log base phi of sequence A090162 (phi = (1+Sqrt(5))/2).

Original entry on oeis.org

0, 16, 137, 978, 6754, 46355, 317796, 2178292, 14930333, 102334134, 701408710, 4807526951, 32951280072, 225851433688, 1548008755889, 10610209857690, 72723460248106, 498454011879227, 3416454622906668, 23416728348467644
Offset: 1

Views

Author

Greg Huber, Feb 04 2006

Keywords

Crossrefs

Cf. A033888.

Programs

  • Mathematica
    Table[Fibonacci[4n]-2n-1,{n,20}] (* or *) LinearRecurrence[{9,-16,9,-1},{0,16,137,978},20] (* Harvey P. Dale, May 28 2015 *)

Formula

G.f. x^2*(16-7*x+x^2) / ( (x^2-7*x+1)*(x-1)^2 ). - R. J. Mathar, Oct 19 2012
a(0)=0, a(1)=16, a(2)=137, a(3)=978, a(n)=9*a(n-1)-16*a(n-2)+ 9*a(n-3)- a(n-4). - Harvey P. Dale, May 28 2015

Extensions

Corrected by R. J. Mathar, Oct 19 2012

A142880 a(n) = 7*a(n-3) - a(n-6).

Original entry on oeis.org

0, 1, 2, 3, 8, 13, 21, 55, 89, 144, 377, 610, 987, 2584, 4181, 6765, 17711, 28657, 46368, 121393, 196418, 317811, 832040, 1346269, 2178309, 5702887, 9227465, 14930352, 39088169, 63245986, 102334155, 267914296, 433494437, 701408733, 1836311903
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1;
    a[n_] := a[n] = If[Mod[n, 3] == 1, 2*a[n - 1] + a[n - 2], If[Mod[n, 3] == 0, a[n - 1] + a[n - 2], 2*a[n - 1] - a[n - 2]]];
    Table[a[n], {n, 0, 50}]
    LinearRecurrence[{0,0,7,0,0,-1},{0,1,2,3,8,13},40] (* Harvey P. Dale, Jul 17 2021 *)

Formula

G.f.: -x*(1+x)*(x^3 - 2*x^2 - x - 1) / ( 1 - 7*x^3 + x^6 ).
a(3n) = A033888(n).
a(3n+1) = A033890(n).
a(3n+2)= A033891(n).
a(n) = 2*a(n-1) + a(n-2) if n == 1 (mod 3).
a(n) = a(n-1) + a(n-2) if n == 0 (mod 3).
a(n) = 2*a(n-1) - a(n-2) if n == 2 (mod 3).
Previous Showing 21-26 of 26 results.