A034975
One seventh of octo-factorial numbers.
Original entry on oeis.org
1, 15, 345, 10695, 417105, 19603935, 1078216425, 67927634775, 4822862069025, 381006103452975, 33147531000408825, 3149015445038838375, 324348590839000352625, 36002693583129039141375, 4284320536392355657823625, 544108708121829168543600375, 73454675596446937753386050625
Offset: 1
-
[n le 1 select 1 else (8*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
Table[8^n*Pochhammer[7/8, n]/7, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
-
[8^n*rising_factorial(7/8,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A051620
a(n) = (4*n+8)(!^4)/8(!^4), related to A034177(n+1) ((4*n+4)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 12, 192, 3840, 92160, 2580480, 82575360, 2972712960, 118908518400, 5231974809600, 251134790860800, 13059009124761600, 731304510986649600, 43878270659198976000, 2808209322188734464000, 190958233908833943552000
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(12/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
G(x):=(1-4*x)^(n-4): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..15); # Zerinvary Lajos, Apr 04 2009
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn=20},CoefficientList[Series[1/(1-4*x)^3,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 10 2017 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(12/4))) \\ G. C. Greubel, Aug 15 2018
A049213
A convolution triangle of numbers obtained from A025749.
Original entry on oeis.org
1, 6, 1, 56, 12, 1, 616, 148, 18, 1, 7392, 1904, 276, 24, 1, 93632, 25312, 4080, 440, 30, 1, 1230592, 344960, 59808, 7360, 640, 36, 1, 16612992, 4792128, 876960, 118224, 11960, 876, 42, 1, 228890112, 67586816, 12900416, 1860992, 209200, 18096, 1148
Offset: 1
-
a[n_, n_] = 1; a[n_, m_] := m/n * 4^(n-m) * Sum[ Binomial[n+k-1, n-1] * Sum[ Binomial[j, n-m-3*k+2*j] * 4^(j-k) * Binomial[k, j] * 3^(-n+m+3*k-j) * 2^(n-m-3*k+j) * (-1)^(n-m-3*k+2*j), {j, 0, k}], {k, 1, n-m}]; Table[a[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
A051621
a(n) = (4*n+9)(!^4)/9(!^4), related to A007696(n+1) ((4*n+1)(!^4) quartic, or 4-factorials).
Original entry on oeis.org
1, 13, 221, 4641, 116025, 3364725, 111035925, 4108329225, 168441498225, 7579867420125, 371413503586125, 19684915690064625, 1122040194333683625, 68444451854354701125, 4448889370533055573125, 306973366566780834545625
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-4*x)^(13/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 4*x)^(13/4), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 15 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-4*x)^(13/4))) \\ G. C. Greubel, Aug 15 2018
A370915
A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 5, 12, 21, 32, 45, 60, 77, 96, ...
[3] 0, 45, 120, 231, 384, 585, 840, 1155, 1536, ...
[4] 0, 585, 1680, 3465, 6144, 9945, 15120, 21945, 30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 5, 2, 1;
[4] 0, 45, 12, 3, 1;
[5] 0, 585, 120, 21, 4, 1;
[6] 0, 9945, 1680, 231, 32, 5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
Columns:
A000007,
A007696,
A001813,
A008545,
A047053,
A007696,
A000407,
A034176,
A052570 and
A034177,
A051617,
A051618,
A051619,
A051620.
-
A := (n, k) -> 4^n*pochhammer(k/4, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..5);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
MatrixMatrixMultiply(L, Transpose(U));
-
A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
-
def A(n, k): return 4**n * rising_factorial(k/4, n)
for n in range(6): print([A(n, k) for k in range(9)])
A081407
4th-order non-linear ("factorial") recursion: a(0)=a(1)=a(2)=a(3)=1, a(n) = (n+1)*a(n-4).
Original entry on oeis.org
1, 1, 1, 1, 5, 6, 7, 8, 45, 60, 77, 96, 585, 840, 1155, 1536, 9945, 15120, 21945, 30720, 208845, 332640, 504735, 737280, 5221125, 8648640, 13627845, 20643840, 151412625, 259459200, 422463195, 660602880, 4996616625, 8821612800
Offset: 0
Following sequences are interleaved: A007696: {5,45,585,..}; A000404: {6,60,840,..} A034176: {7,77,1155,..}; A034177: {8,96,1536,..}
-
a:= function(k)
if k<4 then return 1;
elif k<7 then return k+1;
else return (k+1)*a(k-4);
fi;
end;
List([0..35], n-> a(n) ); # G. C. Greubel, Aug 24 2019
-
a081407 n = a081408_list !! n
a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
-- Reinhard Zumkeller, Jan 05 2012
-
a:= func< n | n le 3 select 1 else n in [4..6] select n+1 else (n+1)*Self(n-3) >;
[a(n): n in [0..35]]; // G. C. Greubel, Aug 24 2019
-
f[n_]:= (n+1)*f[n-4]; f[0]=1; f[1]=1; f[2]=1; f[3]=1; Table[f[n], {n, 0, 40}]
nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,a(n+2)}; NestList[nxt,{3,1,1,1,1},40][[;;,2]] (* Harvey P. Dale, Jan 13 2025 *)
-
a(n) = if(n<4, 1, (n+1)*a(n-4) );
vector(35, n, a(n-1)) \\ G. C. Greubel, Aug 24 2019
-
def a(n):
if n<4: return 1
elif 4<= n <= 6: return n+1
else: return (n+1)*a(n-4)
[a(n) for n in (0..35)] # G. C. Greubel, Aug 24 2019
A081408
a(n) = (n+1)*a(n-5), with a(0)=a(1)=a(2)=a(3)=a(4)=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 7, 8, 9, 10, 66, 84, 104, 126, 150, 1056, 1428, 1872, 2394, 3000, 22176, 31416, 43056, 57456, 75000, 576576, 848232, 1205568, 1666224, 2250000, 17873856, 27143424, 39783744, 56651616, 78750000, 643458816, 1004306688, 1511782272
Offset: 0
A008548, A034323, A034300, A034301, A034325 sequences are combed together as A081408(5n+r) with r=0,1,2,3,4.
Cf.
A001147,
A002866,
A034001,
A007599,
A034000,
A007696,
A000407,
A034176,
A034177,
A008548,
A034323,
A034300,
A034301,
A034325 [double, triple, quartic, quintic, factorial subsequences], generated together in
A081405-
A081408.
-
a:=[1,1,1,1,1];; for n in [6..40] do a[n]:=n*a[n-5]; od; a; # G. C. Greubel, Aug 15 2019
-
a081407 n = a081408_list !! n
a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
-- Reinhard Zumkeller, Jan 05 2012
-
[n le 5 select 1 else n*Self(n-5): n in [1..40]]; // G. C. Greubel, Aug 15 2019
-
a[0]=a[1]=a[2]=a[3]=a[4]=1; a[x_]:= (x+1)*a[x-5]; Table[a[n], {n, 40}]
-
m=30; v=concat([1,1,1,1,1], vector(m-5)); for(n=6, m, v[n]=n*v[n-5] ); v \\ G. C. Greubel, Aug 15 2019
-
def a(n):
if (n<5): return 1
else: return (n+1)*a(n-5)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 15 2019
A225478
Triangle read by rows, 4^k*s_4(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
Original entry on oeis.org
1, 3, 4, 21, 40, 16, 231, 524, 336, 64, 3465, 8784, 7136, 2304, 256, 65835, 180756, 170720, 72320, 14080, 1024, 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096, 40883535, 125416476, 143221680, 81946816, 25939200, 4609024, 430080, 16384, 1267389585, 4051444896, 4941537984, 3113238016, 1131902464, 246636544, 31768576, 2228224, 65536
Offset: 0
[n\k][ 0, 1, 2, 3, 4, 5, 6 ]
[0] 1,
[1] 3, 4,
[2] 21, 40, 16,
[3] 231, 524, 336, 64,
[4] 3465, 8784, 7136, 2304, 256,
[5] 65835, 180756, 170720, 72320, 14080, 1024,
[6] 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096.
-
s[][0, 0] = 1; s[m][n_, k_] /; (k > n || k < 0) = 0; s[m_][n_, k_] := s[m][n, k] = s[m][n - 1, k - 1] + (m*n - 1)*s[m][n - 1, k];
T[n_, k_] := 4^k*s[4][n, k];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
-
@CachedFunction
def SF_CS(n, k, m):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return m*SF_CS(n-1, k-1, m) + (m*n-1)*SF_CS(n-1, k, m)
for n in (0..8): [SF_CS(n, k, 4) for k in (0..n)]
Comments