cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 60 results. Next

A038700 Smallest prime == -1 (mod n).

Original entry on oeis.org

2, 3, 2, 3, 19, 5, 13, 7, 17, 19, 43, 11, 103, 13, 29, 31, 67, 17, 37, 19, 41, 43, 137, 23, 149, 103, 53, 83, 173, 29, 61, 31, 131, 67, 139, 71, 73, 37, 233, 79, 163, 41, 257, 43, 89, 137, 281, 47, 97, 149, 101, 103, 211, 53, 109, 167, 113, 173, 353, 59, 487, 61, 251
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A034694.

Programs

  • Mathematica
    f[n_] := Block[{k = n - 1}, While[ !PrimeQ@k, k += n]; k]; Array[f, 63] (* Robert G. Wilson v, Jun 09 2009 *)
    With[{prs=Prime[Range[100]]},Table[SelectFirst[prs,Mod[#,n]==n-1&],{n,70}]] (* Harvey P. Dale, Apr 26 2023 *)
  • PARI
    N=10^8;  default(primelimit,N);
    a(n)=forprime(p=2,10^7, if(p%n==n-1,return(p)));
    /* Joerg Arndt, Apr 16 2013 */
    
  • PARI
    a(n)=my(j);while(!isprime(j++*n-1),);j*n-1 \\ Charles R Greathouse IV, Apr 18 2013

A070846 Smallest prime == 1 (mod 2n).

Original entry on oeis.org

3, 5, 7, 17, 11, 13, 29, 17, 19, 41, 23, 73, 53, 29, 31, 97, 103, 37, 191, 41, 43, 89, 47, 97, 101, 53, 109, 113, 59, 61, 311, 193, 67, 137, 71, 73, 149, 229, 79, 241, 83, 337, 173, 89, 181, 277, 283, 97, 197, 101, 103, 313, 107, 109, 331, 113, 229, 233, 709, 241
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Comments

From Jianing Song, Feb 14 2021: (Start)
a(n) is the smallest prime p such that there is a primitive 2n-th root of unity modulo p, i.e., there is an element with order 2n in the multiplicative group of integers modulo p.
For n > 1, a(n) is the smallest prime p such that the 2n-th cyclotomic field Q(exp(2*Pi*i/(2*n))) can be embedded into the p-adic field Q_p. (End)

Crossrefs

Programs

  • Mathematica
    With[{prs=Prime[Range[200]]},Flatten[Table[Select[prs,Mod[#,2n]==1&,1],{n,60}]]] (* Harvey P. Dale, Jan 16 2013 *)
  • PARI
    for(n=1,80,s=1; while((isprime(s)*s-1)%(2*n)>0,s++); print1(s,","))

Formula

a(n) = 2*n*A016014(n) + 1. - Dmitry Kamenetsky, Oct 26 2016

Extensions

More terms from Benoit Cloitre, May 18 2002

A035089 Smallest prime of form 2^n*k + 1.

Original entry on oeis.org

2, 3, 5, 17, 17, 97, 193, 257, 257, 7681, 12289, 12289, 12289, 40961, 65537, 65537, 65537, 786433, 786433, 5767169, 7340033, 23068673, 104857601, 167772161, 167772161, 167772161, 469762049, 2013265921, 3221225473, 3221225473, 3221225473, 75161927681
Offset: 0

Views

Author

Keywords

Comments

a(n) is the smallest prime p such that the multiplicative group modulo p has a subgroup of order 2^n. - Joerg Arndt, Oct 18 2020

Crossrefs

Analogous case is A034694. Fermat primes (A019434) are a subset. See also Fermat numbers A000215.

Programs

  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 1], k++ ]; AppendTo[a, k 2^n + 1], {n, 1, 50}]; a (* Artur Jasinski *)
  • PARI
    a(n)=for(k=1,9e99,if(ispseudoprime(k<Charles R Greathouse IV, Jul 06 2011

Extensions

a(0) from Joerg Arndt, Jul 06 2011

A050921 Smallest prime of form n*2^m+1, m >= 0, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 7, 5, 11, 7, 29, 17, 19, 11, 23, 13, 53, 29, 31, 17, 137, 19, 1217, 41, 43, 23, 47, 97, 101, 53, 109, 29, 59, 31, 7937, 257, 67, 137, 71, 37, 149, 1217, 79, 41, 83, 43, 173, 89, 181, 47
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Comments

Primes arising from A040076 (or 0 if no such prime exists).
Or: Starting with x=n+1, the first prime created by iterating the map x-> 2*x-1. - Kevin L. Schwartz and Christian N. K. Anderson, May 13 2013

Crossrefs

Programs

  • Maple
    A050921 := proc(n)
        for m from 0 do
            if isprime(n*2^m+1) then
                return n*2^m+1 ;
            end if;
        end do;
    end proc; # R. J. Mathar, Jun 01 2013
  • Mathematica
    Do[m = 0; While[ !PrimeQ[n*2^m + 1], m++ ]; Print[n*2^m + 1], {n, 1, 47} ]

Extensions

The next term (47*2^583 + 1) is too large to show.

A141849 Primes congruent to 1 mod 11.

Original entry on oeis.org

23, 67, 89, 199, 331, 353, 397, 419, 463, 617, 661, 683, 727, 859, 881, 947, 991, 1013, 1123, 1277, 1321, 1409, 1453, 1607, 1783, 1871, 2003, 2069, 2113, 2179, 2267, 2311, 2333, 2377, 2399, 2531, 2663, 2707, 2729, 2861, 2927, 2971, 3037, 3169, 3191, 3257
Offset: 1

Views

Author

N. J. A. Sloane, Jul 11 2008

Keywords

Comments

Conjecture: Also primes p such that ((x+1)^11-1)/x has 10 distinct irreducible factors of degree 1 over GF(p). - Federico Provvedi, Apr 17 2018
Primes congruent to 1 mod 22. - Chai Wah Wu, Apr 28 2025

Crossrefs

Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), A007528 (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), this sequence (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).

Programs

Formula

a(n) ~ 10n log n. - Charles R Greathouse IV, Jul 02 2016

A070853 Smallest prime == 1 mod (9n).

Original entry on oeis.org

19, 19, 109, 37, 181, 109, 127, 73, 163, 181, 199, 109, 937, 127, 271, 433, 307, 163, 2053, 181, 379, 199, 829, 433, 1801, 937, 487, 757, 523, 271, 1117, 577, 1783, 307, 631, 1297, 1999, 2053, 3511, 1801, 739, 379, 1549, 397, 811, 829, 1693, 433, 883
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,80,s=1; while((isprime(s)*s-1)%(9*n)>0,s++); print1(s,","))

Extensions

Corrected and extended by Benoit Cloitre, May 18 2002

A070850 Smallest prime == 1 mod (6n).

Original entry on oeis.org

7, 13, 19, 73, 31, 37, 43, 97, 109, 61, 67, 73, 79, 337, 181, 97, 103, 109, 229, 241, 127, 397, 139, 433, 151, 157, 163, 337, 349, 181, 373, 193, 199, 409, 211, 433, 223, 229, 937, 241, 739, 757, 1033, 1321, 271, 277, 283, 577, 883, 601, 307, 313, 3181, 1297
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,80,s=1; while((isprime(s)*s-1)%(6*n)>0,s++); print1(s,","))

Extensions

More terms from Benoit Cloitre, May 18 2002

A070851 Smallest prime == 1 mod (7n).

Original entry on oeis.org

29, 29, 43, 29, 71, 43, 197, 113, 127, 71, 463, 337, 547, 197, 211, 113, 239, 127, 1597, 281, 883, 463, 967, 337, 701, 547, 379, 197, 2437, 211, 1303, 449, 463, 239, 491, 757, 2591, 1597, 547, 281, 1723, 883, 3011, 617, 631, 967, 659, 337, 1373, 701, 1429
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=60,prs=Prime[Range[500]]},Table[SelectFirst[prs,Mod[#,7n]==1&],{n,nn}]] (* Harvey P. Dale, Apr 13 2022 *)
  • PARI
    for(n=1,80,s=1; while((isprime(s)*s-1)%(7*n)>0,s++); print1(s,","))

Extensions

More terms from Benoit Cloitre, May 18 2002

A070852 Smallest prime == 1 mod (8n).

Original entry on oeis.org

17, 17, 73, 97, 41, 97, 113, 193, 73, 241, 89, 97, 313, 113, 241, 257, 137, 433, 457, 641, 337, 353, 1289, 193, 401, 1249, 433, 449, 233, 241, 1489, 257, 1321, 1361, 281, 577, 593, 1217, 313, 641, 2297, 337, 1033, 353, 1801, 3313, 1129, 769, 3137, 401
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Crossrefs

Cf. A070846 to A070851 and A070853.
Cf. A034694.

Programs

  • PARI
    for(n=1,80,s=1; while((isprime(s)*s-1)%(8*n)>0,s++); print1(s,","))

Extensions

More terms from Benoit Cloitre, May 18 2002

A070847 Smallest prime == 1 mod (3n).

Original entry on oeis.org

7, 7, 19, 13, 31, 19, 43, 73, 109, 31, 67, 37, 79, 43, 181, 97, 103, 109, 229, 61, 127, 67, 139, 73, 151, 79, 163, 337, 349, 181, 373, 97, 199, 103, 211, 109, 223, 229, 937, 241, 739, 127, 1033, 397, 271, 139, 283, 433, 883, 151, 307, 157, 3181, 163, 331, 337
Offset: 1

Views

Author

Amarnath Murthy, May 15 2002

Keywords

Crossrefs

Cf. A034694.
Cf. A024892 (n such that a(n)=3*n+1).
Cf. A002476.

Programs

  • Maple
    f:= proc(n) local k,d;
      if n::even then d:= 3*n else d:= 6*n fi;
      for k from 1 by d do if isprime(k) then return k fi od
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 19 2019
  • Mathematica
    a[n_] := Module[{k, d}, If[EvenQ[n], d = 3n, d = 6n]; For[k = 1, True, k += d, If[PrimeQ[k], Return[k]]]];
    Array[a, 100] (* Jean-François Alcover, Jun 11 2020, after Maple *)
  • PARI
    for(n=1,80,s=1; while((isprime(s)*s-1)%(3*n)>0,s++); print1(s,","))

Extensions

More terms from Benoit Cloitre, May 18 2002
Previous Showing 11-20 of 60 results. Next