cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 60 results. Next

A071899 a(0)=1 and for n>0: a(n) = least prime>a(n-1) of form 1+k*n.

Original entry on oeis.org

1, 2, 3, 7, 13, 31, 37, 43, 73, 109, 131, 199, 229, 313, 337, 421, 433, 443, 487, 571, 601, 631, 661, 691, 769, 1051, 1093, 1297, 1373, 1451, 1471, 1489, 1601, 1783, 1871, 2311, 2341, 2591, 2699, 2731, 2801, 2953, 3067, 3527, 3697, 4051
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 12 2002

Keywords

Examples

			n=5: in the sequence 1+k*5: 6,11,16,21,26,31,36,41,... the first prime >13=a(4) is 31, therefore a(5)=31.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := a[n] = (p = NextPrime[a[n-1]]; While[True, If[Mod[p, n] == 1, Break[], p = NextPrime[p]]]; p); Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Oct 10 2011 *)
    lp[{n_,p_}]:=Module[{np=NextPrime[p]},While[!IntegerQ[(np-1)/(n+1)],np= NextPrime[np]]; {n+1,np}]; Transpose[NestList[lp,{0,1},50]][[2]] (* Harvey P. Dale, May 12 2015 *)

A085641 Smallest prime == 1 (mod p*q*...*k) where p, q, ..., k are all the distinct prime divisors of n. Or, smallest prime == 1 (mod the largest squarefree divisor of n).

Original entry on oeis.org

2, 3, 7, 3, 11, 7, 29, 3, 7, 11, 23, 7, 53, 29, 31, 3, 103, 7, 191, 11, 43, 23, 47, 7, 11, 53, 7, 29, 59, 31, 311, 3, 67, 103, 71, 7, 149, 191, 79, 11, 83, 43, 173, 23, 31, 47, 283, 7, 29, 11, 103, 53, 107, 7, 331, 29, 229, 59, 709, 31, 367, 311, 43, 3, 131, 67, 269, 103, 139
Offset: 1

Views

Author

Amarnath Murthy, Jason Earls, Jul 11 2003

Keywords

Comments

All the numbers having the same set of prime divisors are mapped to the same prime.

Crossrefs

Programs

  • PARI
    a(n)={my(m=vecprod(factor(n)[,1]), p=1); while(!isprime(p), p+=m); p} \\ Andrew Howroyd, Dec 10 2024

Formula

a(n) = A034694(A007947(n)).

Extensions

Offset corrected by Andrew Howroyd, Dec 10 2024

A086507 If n is even, a(n) = smallest prime == 1 (mod n), If n is odd, a(n) = smallest prime == -1 (mod n).

Original entry on oeis.org

2, 3, 2, 5, 19, 7, 13, 17, 17, 11, 43, 13, 103, 29, 29, 17, 67, 19, 37, 41, 41, 23, 137, 73, 149, 53, 53, 29, 173, 31, 61, 97, 131, 103, 139, 37, 73, 191, 233, 41, 163, 43, 257, 89, 89, 47, 281, 97, 97, 101, 101, 53, 211, 109, 109, 113, 113, 59, 353, 61, 487, 311, 251
Offset: 1

Views

Author

Amarnath Murthy, Jul 29 2003

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local x;
    if n::even then x:= 1 else x:= -1; fi;
    do
      x:= x+n;
      if isprime(x) then return x fi
    od
    end proc:
    map(f, [$1..100]); # Robert Israel, Dec 09 2020

Extensions

More terms from David Wasserman, Mar 09 2005

A087952 Smallest prime == 1 (mod n) and > n^2.

Original entry on oeis.org

2, 5, 13, 17, 31, 37, 71, 73, 109, 101, 199, 157, 313, 197, 241, 257, 307, 379, 419, 401, 463, 617, 599, 577, 701, 677, 757, 953, 929, 991, 1117, 1153, 1123, 1259, 1471, 1297, 1481, 1483, 1873, 1601, 1723, 1933, 1979, 2069, 2161, 2347, 2351, 2593, 2549, 2551
Offset: 1

Views

Author

Ray Chandler, Sep 16 2003

Keywords

Comments

Primes arising in A087554.
Since A014085(n) ~ n/log(n) one may conjecture that a(n) < 2*n^2 for all n > 1. Numerically we find a(n) = n^2*(1 + O(1/sqrt(n))). - M. F. Hasler, Feb 27 2020

Examples

			For n=1, a(1) = 2, because 2 == 1 mod 1 and 2 > 1^2.
For n=2, a(2) = 5, because 5 == 1 mod 2 and 5 > 2^2.
		

Crossrefs

Cf. A014085 (number of primes between n^2 and (n+1)^2).

Programs

  • Mathematica
    spr[n_]:=Module[{p=NextPrime[n^2]},While[Mod[p,n]!=1,p=NextPrime[p]];p]; Join[ {2},Array[spr,50,2]] (* Harvey P. Dale, Jun 21 2021 *)
  • PARI
    apply( {A087952(n)=forprime(p=n^2+1,,(p-1)%n||return(p))}, [1..66]) \\ M. F. Hasler, Feb 27 2020

Extensions

Examples added by N. J. A. Sloane, Jun 21 2021

A116605 Smallest prime p such that p == 1 (mod prime(n)) and not p == 1 (mod k) for 2 < k < prime(n).

Original entry on oeis.org

3, 7, 11, 239, 23, 443, 647, 1103, 47, 59, 2543, 3923, 83, 9203, 6299, 107, 7907, 8663, 11927, 14627, 12119, 15959, 167, 179, 20759, 20807, 23279, 23327, 28559, 227, 37847, 263, 43019, 54767, 53939, 54059, 54323, 54443, 66467, 347, 359, 69143, 383
Offset: 1

Views

Author

Klaus Brockhaus, Feb 19 2006

Keywords

Comments

a(n) > 2*prime(n) for n > 1.
a(n) = 2*prime(n)+1 if prime(n) is in A005384. Otherwise, a(n) > 2*prime(n)^2+1 for n > 1. - Robert Israel, Mar 29 2017

Examples

			a(1) = 3 since prime(1) = 2 and 3 == 1 (mod 2).
a(4) = 239 since prime(4) = 7, 239 == 1 (mod 7) and for each of the primes q smaller than 239 with q == 1 (mod 7) there is a k (2 < k < 7) such that q == 1 (mod k): 29 == 1 (mod 4), 43 == 1 (mod 6), 71 == 1 (mod 5), 113 == 1 (mod 4), 127 == 1 (mod 3), 197 == 1 (mod 4), 211 == 1 (mod 5), whereas 239 == 2 (mod 3), 3 (mod 4), 4 (mod 5), 5
(mod 6).
		

Crossrefs

Programs

  • Maple
    V:= {seq(4*i+2,i=1..10^5)}: A[1]:= 3:
    for n from 2 do
      pn:= ithprime(n);
      R:= select(t -> t mod pn = 0, V);
      found:= false;
      for r in R do
        if isprime(r+1) then
          found:= true;
          A[n]:= r+1;
          break
        fi
      od;
      if not found then break fi;
      V:= V minus R;
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Mar 29 2017

A338929 a(n) is the smallest prime number p larger than A072668(n) such that p is equal to 1 (mod A072668(n)).

Original entry on oeis.org

7, 11, 29, 17, 19, 23, 53, 29, 31, 103, 191, 41, 43, 47, 73, 101, 53, 109, 59, 311, 97, 67, 103, 71, 149, 191, 79, 83, 173, 89, 181, 283, 97, 197, 101, 103, 107, 109, 331, 113, 229, 709, 367, 311, 127, 193, 131, 269, 137, 139, 569, 293, 149, 151, 229, 463
Offset: 1

Views

Author

Ahmad J. Masad, Nov 15 2020

Keywords

Comments

In A002808(n)-base numeral system, a(n) is the smallest prime number for which the digital root is 1.
Conjecture: As n approaches infinity, the probability that a prime number is a term in this sequence approaches 1.
Conjecture: There are infinitely many primes that are not terms in this sequence.
The sequence for all positive numbers (instead of A072668) is A034694. - Peter Munn, May 02 2023

Examples

			For n=20, A072668(20)=31, and 311 is the smallest prime number p larger than 31 such that p is equal to 1 (mod 31), so a(20)=311.
		

Crossrefs

Programs

  • Mathematica
    Map[Block[{p = NextPrime[#]}, While[Mod[p, #] != 1, p = NextPrime[p]]; p] &, Select[Range[4, 78], CompositeQ] - 1] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    f(x) = {my(p=nextprime(x)); while ((p % x) != 1, p = nextprime(p+1)); p;}
    lista(nn) = {my(list = List()); forcomposite(c=1, nn, listput(list, f(c-1));); Vec(list);} \\ Michel Marcus, Nov 17 2020

Extensions

More terms from Michel Marcus, Nov 17 2020

A034846 a(n) = P(n,6) = 1+6*K(n,6)=1+6*A034783(n). P(n,6) are special primes of 6k+1. The relevant values of k are given by A034783.

Original entry on oeis.org

103, 283, 331, 367, 463, 547, 607, 619, 643, 709, 727, 739, 823, 859, 883, 907, 967, 1021, 1087, 1123, 1171, 1249, 1303, 1423, 1447, 1483, 1489, 1543, 1579, 1597, 1627, 1699, 1723, 1747, 1783
Offset: 1

Views

Author

Keywords

Crossrefs

A034847 a(n) = 1 + 4*A034780(n).

Original entry on oeis.org

29, 53, 101, 109, 149, 173, 181, 197, 229, 269, 293, 317, 337, 349, 373, 389, 461, 509, 557, 569, 641, 653, 677, 701, 709, 773, 797, 821, 829, 853, 937, 941, 1013, 1021, 1033, 1061, 1069, 1109, 1117, 1181, 1193, 1217, 1229, 1277, 1297, 1301, 1373, 1429, 1481, 1493, 1549, 1597
Offset: 1

Views

Author

Keywords

Comments

a(n) = P(n,4) = 1 + 4*K(n,4) = 1 + 4*A034780(n). P(n,4) are special primes of the form 4k+1. The relevant values of k are given by A034780.
Note that, e.g., 5 and 13 are not in this sequence.

Crossrefs

Programs

  • PARI
    a034693(n) = my(s=1); while(!isprime(s*n+1), s++); s;
    isok(n) = a034693(n) == 4;
    lista(nn) = {for (n=1, nn, if (isok(n), print1(4*n+1, ", ")););} \\ Michel Marcus, May 13 2018

Extensions

More terms from Michel Marcus, May 13 2018

A034848 a(n) = 1 + 3*A034782(n).

Original entry on oeis.org

73, 97, 103, 193, 229, 241, 277, 283, 313, 331, 367, 373, 397, 433, 457, 463, 547, 607, 619, 643, 661, 709, 727, 733, 739, 757, 823, 859, 883, 907, 967, 997, 1021, 1033, 1069, 1087, 1093, 1123, 1129, 1171, 1237, 1249, 1303, 1423, 1447, 1453, 1483, 1489, 1543, 1579, 1597
Offset: 1

Views

Author

Keywords

Comments

a(n) = P(n,3) = 1 + 3*K(n,3) = 1 + 3*A034782(n). P(n,3) are special primes of the form 3k+1. The relevant values of k are given by A034782.
Note that, e.g., 13, 19, 31, 5, 13 are not in this sequence.

Crossrefs

Programs

  • PARI
    a034693(n) = my(s=1); while(!isprime(s*n+1), s++); s;
    isok(n) = a034693(n) == 3;
    lista(nn) = {for (n=1, nn, if (isok(n), print1(3*n+1, ", ")););} \\ Michel Marcus, May 13 2018

Extensions

Corrected (wrong term 769 removed) and extended by Michel Marcus, May 13 2018

A061638 Primes p such that the greatest prime divisor of p-1 is 7.

Original entry on oeis.org

29, 43, 71, 113, 127, 197, 211, 281, 337, 379, 421, 449, 491, 631, 673, 701, 757, 883, 1009, 1051, 1373, 1471, 2017, 2269, 2521, 2647, 2689, 2801, 3137, 3361, 3529, 4201, 4481, 5881, 6301, 7001, 7057, 7351, 7561, 7841, 8233, 8821, 10501, 10753, 12097
Offset: 1

Views

Author

Labos Elemer, Jun 13 2001

Keywords

Comments

Prime numbers n for which cos(2*Pi/n) is an algebraic number of 7th degree. - Artur Jasinski, Dec 13 2006

Examples

			For n = {4, 8, 9, 12}, a(n)-1 = {70, 210, 280, 420} = 7*{10, 30, 40, 60}.
		

Crossrefs

The 4th in a family of sequences after A019434(=Fermat-primes), A058383, A061599.

Programs

  • Mathematica
    Select[Prime[Range[2000]],FactorInteger[#-1][[-1,1]] ==7&]  (* Harvey P. Dale, Mar 12 2011 *)
  • PARI
    default(primelimit, 108864001); n=0; forprime (p=3, 108864001, f=factor(p - 1)~; if (f[1, length(f)]==7, write("b061638.txt", n++, " ", p))) \\ Harry J. Smith, Jul 25 2009
    
  • PARI
    list(lim)=my(v=List(), t, t5, t7); lim\=1; lim--; for(a=1, logint(lim\2, 7), t7=2*7^a; for(b=0, logint(lim\t7, 5), t5=5^b*t7; for(c=0, logint(lim\t5, 3), t=3^c*t5; while(t<=lim, if(isprime(t+1), listput(v, t+1)); t<<=1)))); Set(v) \\ Charles R Greathouse IV, Oct 29 2018

Formula

Primes of form 2^a*3^b*5^c*7^d + 1 with a and d > 1.
Previous Showing 41-50 of 60 results. Next