cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A323764 Dirichlet self-convolution of the integer partition numbers A000041.

Original entry on oeis.org

1, 1, 4, 6, 14, 14, 34, 30, 64, 69, 112, 112, 228, 202, 330, 394, 575, 594, 956, 980, 1492, 1674, 2228, 2510, 3700, 3965, 5276, 6200, 8126, 9130, 12318, 13684, 17842, 20622, 25808, 29976, 38377, 43274, 53990, 62976, 77912, 89166, 110656, 126522, 154918, 179744
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(4) = 14 multiset partitions of constant multiset partitions:
  ((1111))              ((22))      ((4))  ((31))  ((211))
  ((11)(11))            ((2)(2))
  ((11))((11))          ((2))((2))
  ((1)(1)(1)(1))
  ((1))((1)(1)(1))
  ((1)(1))((1)(1))
  ((1))((1))((1)(1))
  ((1))((1))((1))((1))
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[PartitionsP[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019

A323776 a(n) = Sum_{k = 1...n} binomial(k + 2^(n - k) - 1, k - 1).

Original entry on oeis.org

1, 3, 7, 16, 40, 119, 450, 2253, 15207, 139190, 1731703, 29335875, 677864041, 21400069232, 924419728471, 54716596051100, 4443400439075834, 495676372493566749, 76041424515817042402, 16060385520094706930608, 4674665948889147697184915
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Number of multiset partitions of integer partitions of 2^(n - 1) whose parts are constant and have equal sums.

Examples

			The a(1) = 1 through a(4) = 16 partitions of partitions:
  (1)  (2)     (4)           (8)
       (11)    (22)          (44)
       (1)(1)  (1111)        (2222)
               (2)(2)        (4)(4)
               (2)(11)       (4)(22)
               (11)(11)      (22)(22)
               (1)(1)(1)(1)  (4)(1111)
                             (11111111)
                             (22)(1111)
                             (1111)(1111)
                             (2)(2)(2)(2)
                             (2)(2)(2)(11)
                             (2)(2)(11)(11)
                             (2)(11)(11)(11)
                             (11)(11)(11)(11)
                             (1)(1)(1)(1)(1)(1)(1)(1)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k+2^(n-k)-1,k-1],{k,n}],{n,20}]
  • PARI
    a(n) = sum(k=1, n, binomial(k+2^(n-k)-1, k-1)); \\ Michel Marcus, Jan 28 2019

A349570 Dirichlet convolution of A011782 [2^(n-1)] with A055615 (Dirichlet inverse of n).

Original entry on oeis.org

1, 0, 1, 4, 11, 24, 57, 112, 244, 480, 1013, 1972, 4083, 8064, 16331, 32512, 65519, 130488, 262125, 523244, 1048377, 2095104, 4194281, 8384176, 16777136, 33546240, 67108096, 134201316, 268435427, 536836584, 1073741793, 2147418112, 4294964213, 8589803520, 17179868787, 34359470272, 68719476699, 137438429184, 274877894643
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2021

Keywords

Comments

Dirichlet convolution of this sequence with phi (A000010) is A000740, with sigma (A000203) it is A034729, and with A018804 it is A034738.

Crossrefs

Cf. A011782, A055615, A349569 (Dirichlet inverse).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # * MoebiusMu[#] * 2^(n/# - 1) &]; Array[a, 40] (* Amiram Eldar, Nov 22 2021 *)
  • PARI
    A055615(n) = (n*moebius(n));
    A349570(n) = sumdiv(n,d,(2^(d-1)) * A055615(n/d));

Formula

a(n) = Sum_{d|n} 2^(d-1) * A055615(n/d).

A247146 As a binary numeral, the bit 2^(m-1) of a(n) is 1 iff m is a proper divisor of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 11, 5, 19, 1, 47, 1, 67, 21, 139, 1, 295, 1, 539, 69, 1027, 1, 2223, 17, 4099, 261, 8267, 1, 16951, 1, 32907, 1029, 65539, 81, 133423, 1, 262147, 4101, 524955, 1, 1056871, 1, 2098187, 16661, 4194307, 1, 8423599, 65, 16777747, 65541
Offset: 1

Views

Author

Morgan L. Owens, Nov 21 2014

Keywords

Comments

a(n)==1 iff n is prime.
Apparently Moebius transform of A178472.
For n>1, the binary representation of a(n) is given by row (n-1) of A077049 (when read as a triangular array). - Tom Edgar, Nov 28 2014

Crossrefs

Programs

  • Mathematica
    With[{n=Range[100]},(1/2) ((Total/@(2^Divisors[n])) - 2^n)]
  • PARI
    a(n) = sumdiv(n, k, 2^(k-1)) - 2^(n-1); \\ Michel Marcus, Nov 25 2014
    
  • Python
    from sympy import divisors
    def A247146(n): return sum(1<Chai Wah Wu, Jul 15 2022

Formula

a(n) = A034729(n) - 2^(n-1). - Michel Marcus, Nov 22 2014

A248906 Binary representation of prime power divisors of n: Sum_{p^k | n} 2^(A065515(p^k)-1).

Original entry on oeis.org

0, 1, 2, 5, 8, 3, 16, 37, 66, 9, 128, 7, 256, 17, 10, 549, 1024, 67, 2048, 13, 18, 129, 4096, 39, 8200, 257, 16450, 21, 32768, 11, 65536, 131621, 130, 1025, 24, 71, 262144, 2049, 258, 45, 524288, 19, 1048576, 133, 74, 4097, 2097152, 551, 4194320, 8201
Offset: 1

Views

Author

Keywords

Examples

			The prime power divisors of 12 are 2, 3, and 4. These are indices 1, 2, and 3 in the list of prime powers, so a(12) = 2^(1-1) + 2^(2-1) + 2^(3-1) = 7.
		

Crossrefs

Programs

  • Haskell
    a248906 = sum . map ((2 ^) . subtract 2 . a095874) . tail . a210208_row
    -- Reinhard Zumkeller, Mar 07 2015
  • PARI
    al(n) = my(r=vector(n),pps=[p| p <- [1..n], isprimepower(p)],p2); for(k=1,#pps,p2=2^(k-1);forstep(j=pps[k],n,pps[k],r[j]+=p2));r
    

Formula

Additive with a(p^k) = Sum_{j=1..k} 2^(A065515(p^j)-1).
a(A051451(k)) = 2^k - 1.
a(n) = Sum_{k=1..A073093(n)} 2^(A095874(A210208(n,k))-2). - Reinhard Zumkeller, Mar 07 2015

A323765 Dirichlet convolution of the integer partition numbers A000041 with the strict partition numbers A000009.

Original entry on oeis.org

1, 1, 3, 5, 9, 10, 22, 20, 37, 44, 65, 68, 127, 119, 182, 226, 307, 335, 511, 544, 782, 913, 1171, 1359, 1908, 2121, 2738, 3286, 4174, 4821, 6305, 7182, 9108, 10739, 13195, 15548, 19465, 22397, 27477, 32423, 39448, 45843, 55995, 64871, 78343, 91761, 109325
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Comments

Also the number of strict multiset partitions of constant multiset partitions of integer partitions of n.

Examples

			The a(1) = 1 through a(5) = 10 strict multiset partitions of constant multiset partitions of integer partitions:
  ((1))  ((2))     ((3))          ((4))             ((5))
         ((11))    ((21))         ((31))            ((41))
         ((1)(1))  ((111))        ((22))            ((32))
                   ((1)(1)(1))    ((211))           ((311))
                   ((1))((1)(1))  ((1111))          ((221))
                                  ((2)(2))          ((2111))
                                  ((11)(11))        ((11111))
                                  ((1)(1)(1)(1))    ((1)(1)(1)(1)(1))
                                  ((1))((1)(1)(1))  ((1))((1)(1)(1)(1))
                                                    ((1)(1))((1)(1)(1))
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[PartitionsQ[d]*PartitionsP[n/d],{d,Divisors[n]}],{n,1,100}]]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 28 2019

A143425 Triangle read by rows A051731 * A130123, 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 0, 4, 1, 2, 0, 8, 1, 0, 0, 0, 16, 1, 2, 4, 0, 0, 32, 1, 0, 0, 0, 0, 0, 64, 1, 2, 0, 8, 0, 0, 0, 128, 1, 0, 4, 0, 0, 0, 0, 0, 256, 1, 2, 0, 0, 16, 0, 0, 0, 0, 512, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 1, 2, 4, 8, 0, 32, 0, 0, 0, 0, 0, 2048
Offset: 1

Views

Author

Gary W. Adamson, Aug 14 2008

Keywords

Comments

Row sums = A034729: (1, 3, 5, 11, 17, ...).

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  1, 0, 4;
  1, 2, 0, 8;
  1, 0, 0, 0, 16;
  1, 2, 4, 0,  0, 32;
  ...
		

Crossrefs

Programs

  • PARI
    tabl(nn) = {ma = matrix(nn, nn, n, k, !(n%k)); mb = matrix(nn, nn, n, k, n--; k--; if (n==k, 2^n, 0)); m = ma*mb; for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ Michel Marcus, Jun 30 2017

Formula

Triangle read by rows A051731 * A130123, 1<=k<=n, where A130123 = an infinite lower triangular matrix with (1, 2, 4, 8, ...) in the main diagonal and the rest zeros. A051731 = the inverse Mobius transform.

Extensions

Typo in data corrected by Michel Marcus, Jun 30 2017

A328337 The number whose binary indices are the nontrivial divisors of n (greater than 1 and less than n).

Original entry on oeis.org

0, 0, 0, 2, 0, 6, 0, 10, 4, 18, 0, 46, 0, 66, 20, 138, 0, 294, 0, 538, 68, 1026, 0, 2222, 16, 4098, 260, 8266, 0, 16950, 0, 32906, 1028, 65538, 80, 133422, 0, 262146, 4100, 524954, 0, 1056870, 0, 2098186, 16660, 4194306, 0, 8423598, 64, 16777746, 65540
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The nontrivial divisors of 18 are {2, 3, 6, 9}, so a(18) = 2^1 + 2^2 + 2^5 + 2^8 = 294.
		

Crossrefs

Removing zeros gives binary indices of rows of A163870.
The version for all divisors is A034729.
The version for proper divisors is A247146.

Programs

  • Mathematica
    Table[Total[(2^DeleteCases[Divisors[n],1|n])/2],{n,100}]
  • Python
    from sympy import divisors
    def A328337(n): return sum(1<<(d-1) for d in divisors(n,generator=True) if 1Chai Wah Wu, Jul 15 2022

Formula

A000120(a(n)) = A070824(n).
A070939(a(n)) = A032742(n).
A001511(a(n)) = A107286(n).

A336997 a(n) = n! * Sum_{d|n} 2^(d - 1) / d!.

Original entry on oeis.org

1, 4, 10, 56, 136, 1952, 5104, 94208, 605056, 7741952, 39917824, 1458295808, 6227024896, 175463616512, 2353813878784, 48886264659968, 355687428161536, 17362063156969472, 121645100409094144, 6001501553433509888, 85800344155030552576, 2248030289949388439552
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[2^(d - 1)/d!, {d, Divisors[n]}], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[(Exp[2 x^k] - 1)/2, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
  • PARI
    a(n) = n! * sumdiv(n, d, 2^(d-1)/d!); \\ Michel Marcus, Aug 12 2020

Formula

E.g.f.: Sum_{k>=1} (exp(2*x^k) - 1) / 2.
a(p) = p! + 2^(p - 1), where p is prime.

A360303 a(n) = Sum_{k=1..floor(sqrt(n))} 2^floor(n/k-k).

Original entry on oeis.org

0, 1, 2, 4, 9, 17, 34, 66, 132, 261, 521, 1033, 2066, 4114, 8226, 16420, 32837, 65605, 131209, 262281, 524554, 1048850, 2097682, 4194834, 8389668, 16778277, 33556517, 67110981, 134221897, 268439625, 536879242, 1073750154, 2147500178, 4294983954, 8589967634, 17179902228, 34359804453
Offset: 0

Views

Author

Luc Rousseau, Feb 02 2023

Keywords

Comments

This sequence corresponds to the left half of a drawing, the whole drawing being reconstituted by symmetry (see the Illustration link). The divisors of n are closely related to the occurrences of the bit pattern "01 over 10" in the 2 X 2 squares along the (n-1)th and n-th lines (see the pattern link). In particular, n is a prime number if and only if a(n) - a(n-1) = 2^(n-2).

Examples

			For n = 5, floor(sqrt(n)) = 2. So, two bits are set in a(n); they are the bits number floor(5/1-1)=4 and floor(5/2-2)=0, so a(n) = 10001_2 = 17.
		

Crossrefs

Cf. A034729.

Programs

  • PARI
    a(n)=sum(k=1,floor(sqrt(n)),2^floor(n/k-k))

Formula

a(n) = Sum_{k=1..floor(sqrt(n))} 2^floor(n/k - k).
Previous Showing 31-40 of 45 results. Next