cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A277804 Numbers n such that first digit of n divides n, last digit of n divides n, number of divisors of n divides n and phi(n) divides n, where phi(n) is the Euler totient function.

Original entry on oeis.org

1, 2, 8, 12, 24, 36, 128, 288, 384, 864, 972, 1152, 1944, 3456, 6144, 6912, 13122, 18432, 26244, 31104, 62208, 69984, 209952, 279936, 294912, 497664, 839808, 884736, 1679616, 3538944, 4478976, 13436928, 22674816, 25165824, 31850496, 45349632
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 01 2016

Keywords

Comments

Numbers n such that A000030(n)|n, A010879(n)|n, A000005(n)|n and A000010(n)|n.
Intersection of A007694, A034709, A033950 and A034837.

Examples

			a(5) = 24 because 24/2 = 12, 24/4 = 6, 24 has 8 divisors {1,2,3,4,6,8,12,24}, 24/8 = 3, phi(24) = 8 {1,5,7,11,13,17,19,23} and 24/8 = 3 (all are an integers).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[50000000], Divisible[#1, First[IntegerDigits[#1]]] && Divisible[#1, Last[IntegerDigits[#1]]] && Divisible[#1, DivisorSigma[0, #1]] && Divisible[#1, EulerPhi[#1]] & ]

Extensions

a(24) - a(36) added by G. C. Greubel, Nov 02 2016

A176659 Partial sums of A038770.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 277, 302, 328, 356, 386, 417, 449, 482, 517, 553, 592, 632, 673, 715, 759, 804, 852, 902, 953, 1005, 1060, 1120, 1181, 1243, 1306, 1370, 1435, 1501, 1571, 1642
Offset: 1

Views

Author

Jonathan Vos Post, Apr 23 2010

Keywords

Comments

Partial sums of numbers divisible by at least one of their digits. Identical to triangular numbers A000217 until a(23), then differs, because 23 is the smallest natural number in the complement of A038770 (A038772, i.e., not divisible by at least one of its digits). Hence this partial sum is the triangular numbers minus the partial sums of A038772, properly offset. The subsequence of primes (of course 3 is the largest prime triangular number) in the partial sum begins: 3, 277, 449, 673, 953, 1181, 1571, 1789, 2027. What are the equivalents in bases other than 10?

Examples

			a(23) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20 + 21 + 22 + 24 = 277 is prime.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Select[Range[110],MemberQ[Divisible[#,Cases[ IntegerDigits[ #], Except[ 0]]], True]&]] (* Harvey P. Dale, May 11 2017 *)

Formula

a(n) = Sum_{i=1..n} A038770(i).

A188454 Numbers n whose decimal digits are distinct and no digit divides n.

Original entry on oeis.org

23, 27, 29, 34, 37, 38, 43, 46, 47, 49, 53, 54, 56, 57, 58, 59, 67, 68, 69, 73, 74, 76, 78, 79, 83, 86, 87, 89, 94, 97, 98, 203, 207, 209, 239, 247, 249, 253, 257, 259, 263, 267, 269, 283, 289, 293, 307, 308, 329, 346, 347, 349, 356, 358, 359, 367, 370, 374
Offset: 1

Views

Author

Andy Edwards, Mar 31 2011

Keywords

Comments

These may not contain 1 or have a 2 or 5 as the last digit. They include prime numbers not containing the digit 1 and composites with a smallest prime factor > 10 and obeying the other constraints (e.g. the largest case is 987654203 = 31*31859813).
The first even case is 34. The first consecutive pair is {37, 38}. {56,57,58,59} is a consecutive quadruple which is the maximal size for such a subset.
There are 202623 terms in this sequence. - Nathaniel Johnston, May 19 2011

Crossrefs

Programs

  • Mathematica
    dddQ[n_]:=Module[{dcn=DigitCount[n]},Max[dcn]==1&&First[dcn]==0 && Union[ Divisible[n,Select[IntegerDigits[n],#!=0&]]]=={False}]; Select[Range[ 400],dddQ] (* Harvey P. Dale, May 01 2012 *)

A247884 Number of positive integers < 10^n divisible by their first digit.

Original entry on oeis.org

9, 41, 327, 3158, 31450, 314349, 3143320, 31433005, 314329833, 3143298089, 31432980631, 314329806030, 3143298060001, 31432980599686, 314329805996514, 3143298059964770, 31432980599647312, 314329805996472711, 3143298059964726682, 31432980599647266367
Offset: 1

Views

Author

Derek Orr, Sep 25 2014

Keywords

Comments

a(n)/10^n seems to converge to a number around .3143...
a(n)/10^n converges to 7129/22680. - Hiroaki Yamanouchi, Sep 26 2014

Crossrefs

Programs

  • PARI
    a(n)=c=0;for(k=1,10^n-1,d=digits(k);if(k%d[1]==0,c++));c
    n=1;while(n<10,print1(a(n),", ");n++)
    
  • Python
    count = 9 # Start with the first 9 digits
    print(1, 9)
    n = 2
    while n < 101:
        for a in range(1, 10):
            count += 10**(n-1)//a
            if 10**(n-1) % a != 0:
                count += 1
        print(n, count)
        n += 1
    # David Consiglio, Jr., Sep 26 2014

Formula

G.f.: x*(9 - 67*x + 24*x^2 + 14*x^3 - 56*x^4 + 21*x^5 + 7*x^6 + 5*x^7)/((1 - x)^2*(1 + x)*(1 - 10*x)*(1 - x + x^2)). - Robert Israel, Mar 10 2025

Extensions

a(9)-a(20) from Hiroaki Yamanouchi, Sep 26 2014

A308237 Numbers m not ending with 0 that contain a digit, other than the leftmost digit, that can be removed such that the resulting number d divides m.

Original entry on oeis.org

11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 28, 33, 36, 39, 44, 48, 55, 66, 77, 88, 99, 105, 108, 121, 132, 135, 143, 154, 165, 176, 187, 192, 195, 198, 225, 231, 242, 253, 264, 275, 286, 297, 315, 341, 352, 363, 374, 385, 396, 405, 451, 462, 473, 484, 495, 561, 572, 583, 594, 671, 682, 693
Offset: 1

Views

Author

Bernard Schott, May 16 2019

Keywords

Comments

When m is a term, then, necessarily, the digit that is removed is the second from the left.
This sequence is finite with 95 integers and the greatest term is 180625. The number of terms with respectively 2, 3, 4, 5, 6 digits is 23, 44, 10, 17, 1.
The obtained quotients m/d belong to: { 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19 } (all proofs in Diophante link).

Examples

			264 is a term because 264/24 = 11.
34875 is a term because 34875/3875 = 9.
		

Crossrefs

Programs

  • MATLAB
    m=1;
    for u=10:700 digit=dec2base(u,10)-'0';
       if digit(length(digit))~=0 aa=str2num(strrep(num2str(digit), ' ', ''));
          digit(2)=[]; a=str2num(strrep(num2str(digit), ' ', ''));
    if mod(aa,a)==0 sol(m)=u;  m=m+1;  end; end; end;
    sol % Marius A. Burtea, May 16 2019
    
  • Mathematica
    Select[Range[700], With[{m = #}, And[Mod[#, 10] != 0, AnyTrue[FromDigits@ Delete[IntegerDigits[m], #] & /@ Range[2, IntegerLength@ m], Mod[m, #] == 0 &]]] &] (* Michael De Vlieger, Jun 09 2019 *)
  • PARI
    isok(m) = {if (m % 10, my(d=digits(m)); for (k=2, #d, mk = fromdigits(vector(#d-1, i, if (iMichel Marcus, Jun 21 2019

A337184 Numbers divisible by their first digit and their last digit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 101, 102, 104, 105, 111, 112, 115, 121, 122, 123, 124, 125, 126, 128, 131, 132, 135, 141, 142, 144, 145, 147, 151, 152, 153, 155, 156, 161, 162, 164, 165, 168, 171, 172, 175, 181, 182
Offset: 1

Views

Author

Bernard Schott, Jan 29 2021

Keywords

Comments

The first 23 terms are the same first 23 terms of A034838 then a(24) = 101 while A034838(24) = 111.
Terms of A034709 beginning with 1 and terms of A034837 ending with 1 are terms.
All positive repdigits (A010785) are terms.
There are infinitely many terms m for any of the 53 pairs (first digit, last digit) of m described below: when m begins with {1, 3, 7, 9} then m ends with any digit from 1 to 9; when m begins with {2, 4, 6, 8}, then m must also end with {2, 4, 6, 8}; to finish, when m begins with 5, m must only end with 5. - Metin Sariyar, Jan 29 2021

Crossrefs

Intersection of A034709 and A034837.
Subsequences: A010785\{0}, A034838, A043037, A043040, A208259, A066622.
Cf. A139138.

Programs

  • Mathematica
    Select[Range[175], Mod[#, 10] > 0 && And @@ Divisible[#, IntegerDigits[#][[{1, -1}]]] &] (* Amiram Eldar, Jan 29 2021 *)
  • PARI
    is(n) = n%10>0 && n%(n%10)==0 && n % (n\10^logint(n,10)) == 0 \\ David A. Corneth, Jan 29 2021
  • Python
    def ok(n): s = str(n); return s[-1] != '0' and n%int(s[0])+n%int(s[-1]) == 0
    print([m for m in range(180) if ok(m)]) # Michael S. Branicky, Jan 29 2021
    

Formula

(10n-9)/9 <= a(n) < 45n. (I believe the liminf of a(n)/n is 3.18... and the limsup is 6.18....) - Charles R Greathouse IV, Nov 26 2024
Conjecture: 3n < a(n) < 7n for n > 75. - Charles R Greathouse IV, Dec 02 2024

A357769 Positive numbers with decimal expansion d_1, ..., d_w that are divisible by d_1 + ... + d_k for k = 1..w.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 24, 30, 36, 40, 48, 50, 60, 70, 80, 90, 100, 102, 108, 110, 112, 114, 120, 126, 132, 140, 150, 156, 180, 190, 200, 204, 210, 216, 220, 224, 228, 230, 240, 252, 264, 270, 280, 300, 306, 312, 330, 336, 360, 396, 400
Offset: 1

Views

Author

Rémy Sigrist, Oct 12 2022

Keywords

Comments

Leading zeros are ignored (d_1 > 0).
In other words, this sequence corresponds to numbers that are divisible by the sum of digits of all their prefixes.
All terms belong to A005349 (Niven numbers), A034837 and to A328273.
If t is a term, then 10*t is also a term (see A356350 for the primitive terms).
Contains no odd terms > 9. Else, d_1 and all d_1 + ... + d_k for k = 2..w-1 would have to be odd, but then d_1 + ... + d_w would be even. - Michael S. Branicky, Oct 15 2022

Examples

			180 is a term as it is divisible by 1, 1+8 and 1+8+0.
111 is not a term as it is divisible by 1 and 1+1+1 but not by 1+1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range@400, And @@ IntegerQ /@ (#/Accumulate@ IntegerDigits@ #) &] (* Giovanni Resta, Oct 15 2022 *)
  • PARI
    is(n, base=10) = { my (d=digits(n, base), s=0); for (k=1, #d, if (n % (s+=d[k]), return (0));); return (1); }
    
  • Python
    def ok(n):
        s = str(n); sk = int(s[0])
        for k in range(len(s)-1):
            if n%sk != 0: return False
            sk += int(s[k+1])
        return n%sk == 0
    print([k for k in range(1, 401) if ok(k)]) # Michael S. Branicky, Oct 12 2022

A359841 Integers Xd which are divisible by X, where d is the last decimal digit.

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 33, 36, 39, 40, 44, 48, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420
Offset: 1

Views

Author

Bernard Schott, Jan 15 2023

Keywords

Comments

Integers k such that k is divisible by A059995(k).
This sequence consists of {the thirty-two 2-digit terms of A034837 (from 10 up to 99)} Union {the positive multiples of 10 (A008592\{0})}.

Crossrefs

Cf. A034837, A059995, A178157, A292683 (similar but with dX).
Subsequence: A008592\{0}.

Programs

  • Mathematica
    Select[Range[10, 500], Divisible[#, Floor[#/10]] &] (* Amiram Eldar, Jan 15 2023 *)
  • PARI
    isok(k) = (k>9) && (k % (k \ 10) == 0); \\ Michel Marcus, Jan 20 2023
  • Python
    def ok(n): return n > 9 and n%(n//10) == 0
    print([k for k in range(421) if ok(k)]) # Michael S. Branicky, Jan 15 2023
    
  • Python
    def A359841(n): return (10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 33, 36, 39, 40, 44, 48, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99)[n-1] if n <= 32 else (n-23)*10 # Chai Wah Wu, Jan 20 2023
    

A176660 Partial sums of A038772.

Original entry on oeis.org

23, 50, 79, 113, 150, 188, 231, 277, 324, 373, 426, 480, 536, 593, 651, 710, 777, 845, 914, 987, 1061, 1137, 1215, 1294, 1377, 1463, 1550, 1639, 1733, 1830, 1928, 2131, 2338, 2547, 2770, 2997, 3226, 3459, 3698, 3945, 4194, 4447, 4704, 4963, 5226, 5493
Offset: 1

Views

Author

Jonathan Vos Post, Apr 23 2010

Keywords

Comments

Partial sums of numbers not divisible by any of their digits. The partial sums of the complement (A038770, numbers divisible by at least one of their digits) is A176659. Hence the sum of the two partial sums (properly offset) is triangular numbers A000217. The subsequence of primes in the partial sum begins: 23, 79, 113, 277, 373, 593, 1061, 1733, 2131, 4447, 9479. The smallest square in the sequence is 324.

Examples

			a(4) = 23 + 27 + 29 + 34 = 113 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A038772(i).
Previous Showing 11-19 of 19 results.