cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A119467 A masked Pascal triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 1, 0, 66, 0, 495, 0, 924
Offset: 0

Views

Author

Paul Barry, May 21 2006

Keywords

Comments

Row sums are A011782. Diagonal sums are F(n+1)*(1+(-1)^n)/2 (aerated version of A001519). Product by Pascal's triangle A007318 is A119468. Schur product of (1/(1-x),x/(1-x)) and (1/(1-x^2),x).
Exponential Riordan array (cosh(x),x). Inverse is (sech(x),x) or A119879. - Paul Barry, May 26 2006
Rows give coefficients of polynomials p_n(x) = Sum_{k=0..n} (k+1 mod 2)*binomial(n,k)*x^(n-k) having e.g.f. exp(x*t)*cosh(t)= 1*(t^0/0!) + x*(t^1/1!) + (1+x^2)*(t^2/2!) + ... - Peter Luschny, Jul 14 2009
Inverse of the coefficient matrix of the Swiss-Knife polynomials in ascending order of x^i (reversed and aerated rows of A153641). - Peter Luschny, Jul 16 2012
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*... is equal to A136630 but with the first row and column omitted. - Peter Bala, Jul 28 2014
The row polynomials SKv(n,x) = [(x+1)^n + (x-1)^n]/2 , with e.g.f. cosh(t)*exp(xt), are the umbral compositional inverses of the row polynomials of A119879 (basically the Swiss Knife polynomials SK(n,x) of A153641); i.e., umbrally SKv(n,SK(.,x)) = x^n = SK(n,SKv(.,x)). Therefore, this entry's matrix and A119879 are an inverse pair. Both sequences of polynomials are Appell sequences, i.e., d/dx P(n,x) = n * P(n-1,x) and (P(.,x)+y)^n = P(n,x+y). In particular, (SKv(.,0)+x)^n = SKv(n,x), reflecting that the first column has the e.g.f. cosh(t). The raising operator is R = x + tanh(d/dx); i.e., R SKv(n,x) = SKv(n+1,x). The coefficients of this operator are basically the signed and aerated zag numbers A000182, which can be expressed as normalized Bernoulli numbers. The triangle is formed by multiplying the n-th diagonal of the lower triangular Pascal matrix by the Taylor series coefficient a(n) of cosh(x). More relations for this type of triangle and its inverse are given by the formalism of A133314. - Tom Copeland, Sep 05 2015
The signed version of this matrix has the e.g.f. cos(t) e^{xt}, generating Appell polynomials that have only real, simple zeros and whose extrema are maxima above the x-axis and minima below and situated above and below the zeros of the next lower degree polynomial. The bivariate versions appear on p. 27 of Dimitrov and Rusev in conditions for entire functions that are cosine transforms of a class of functions to have only real zeros. - Tom Copeland, May 21 2020
The n-th row of the triangle is obtained by multiplying by 2^(n-1) the elements of the first row of the limit as k approaches infinity of the stochastic matrix P^(2k-1) where P is the stochastic matrix associated with the Ehrenfest model with n balls. The elements of a stochastic matrix P give the probabilities of arriving in a state j given the previous state i. In particular the sum of every row of the matrix must be 1, and so the sum of the terms of the n-th row of this triangle is 2^(n-1). Furthermore, by the properties of Markov chains, we can interpret P^(2k-1) as the (2k-1)-step transition matrix of the Ehrenfest model and its limit exists and it is again a stochastic matrix. The rows of the triangle divided by 2^(n-1) are the even rows (second, fourth, ...) and the odd rows (first, third, ...) of the limit matrix P^(2k-1). - Luca Onnis, Oct 29 2023

Examples

			Triangle begins
  1,
  0, 1,
  1, 0,  1,
  0, 3,  0,  1,
  1, 0,  6,  0,   1,
  0, 5,  0, 10,   0,   1,
  1, 0, 15,  0,  15,   0,   1,
  0, 7,  0, 35,   0,  21,   0,  1,
  1, 0, 28,  0,  70,   0,  28,  0,  1,
  0, 9,  0, 84,   0, 126,   0, 36,  0, 1,
  1, 0, 45,  0, 210,   0, 210,  0, 45, 0, 1
p[0](x) = 1
p[1](x) = x
p[2](x) = 1 + x^2
p[3](x) = 3*x + x^3
p[4](x) = 1 + 6*x^2 + x^4
p[5](x) = 5*x + 10*x^3 + x^5
Connection with A136630: With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1        \/1        \/1        \      /1         \
|0 1      ||0 1      ||0 1      |      |0 1       |
|1 0 1    ||0 0 1    ||0 0 1    |... = |1 0  1    |
|0 3 0 1  ||0 1 0 1  ||0 0 0 1  |      |0 4  0 1  |
|1 0 6 0 1||0 0 3 0 1||0 0 1 0 1|      |1 0 10 0 1|
|...      ||...      ||...      |      |...       |
- _Peter Bala_, Jul 28 2014
		

References

  • Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.

Crossrefs

From Peter Luschny, Jul 14 2009: (Start)
p[n](k), n=0,1,...
k= 0: 1, 0, 1, 0, 1, 0, ... A128174
k= 1: 1, 1, 2, 4, 8, 16, ... A011782
k= 2: 1, 2, 5, 14, 41, 122, ... A007051
k= 3: 1, 3, 10, 36, 136, ... A007582
k= 4: 1, 4, 17, 76, 353, ... A081186
k= 5: 1, 5, 26, 140, 776, ... A081187
k= 6: 1, 6, 37, 234, 1513, ... A081188
k= 7: 1, 7, 50, 364, 2696, ... A081189
k= 8: 1, 8, 65, 536, 4481, ... A081190
k= 9: 1, 9, 82, 756, 7048, ... A060531
k=10: 1, 10, 101, 1030, ... A081192
p[n](k), k=0,1,...
p[0]: 1,1,1,1,1,1, ....... A000012
p[1]: 0,1,2,3,4,5, ....... A001477
p[2]: 1,2,5,10,17,26, .... A002522
p[3]: 0,4,14,36,76,140, .. A079908 (End)

Programs

  • Haskell
    a119467 n k = a119467_tabl !! n !! k
    a119467_row n = a119467_tabl !! n
    a119467_tabl = map (map (flip div 2)) $
                   zipWith (zipWith (+)) a007318_tabl a130595_tabl
    -- Reinhard Zumkeller, Mar 23 2014
    
  • Magma
    /* As triangle */ [[Binomial(n, k)*(1 + (-1)^(n - k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 26 2015
  • Maple
    # Polynomials: p_n(x)
    p := proc(n,x) local k, pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k);
    add((k+1 mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;
    # Coefficients: a(n)
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*cosh(t),t,16),t,i),x,n),n=0..i)),i=0..8); # Peter Luschny, Jul 14 2009
  • Mathematica
    Table[Binomial[n, k] (1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 06 2015 *)
    n = 15; "n-th row"
    mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];
    mat[[1, 2]] = 1;
    mat[[n + 1, n]] = 1;
    For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];
    For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];
    mat // MatrixForm;
    P2 = Dot[mat, mat];
    R1 = Simplify[
      Eigenvectors[Transpose[P2]][[1]]/
       Total[Eigenvectors[Transpose[P2]][[1]]]]
    R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]
    odd = R2*2^(n - 1) (* _Luca Onnis *)
  • Sage
    @CachedFunction
    def A119467_poly(n):
        R = PolynomialRing(ZZ, 'x')
        x = R.gen()
        return R.one() if n==0 else R.sum(binomial(n,k)*x^(n-k) for k in range(0,n+1,2))
    def A119467_row(n):
        return list(A119467_poly(n))
    for n in (0..10) : print(A119467_row(n)) # Peter Luschny, Jul 16 2012
    

Formula

G.f.: (1-x*y)/(1-2*x*y-x^2+x^2*y^2);
T(n,k) = C(n,k)*(1+(-1)^(n-k))/2;
Column k has g.f. (1/(1-x^2))*(x/(1-x^2))^k*Sum_{j=0..k+1} binomial(k+1,j)*sin((j+1)*Pi/2)^2*x^j.
Column k has e.g.f. cosh(x)*x^k/k!. - Paul Barry, May 26 2006
Let Pascal's triangle, A007318 = P; then this triangle = (1/2) * (P + 1/P). Also A131047 = (1/2) * (P - 1/P). - Gary W. Adamson, Jun 12 2007
Equals A007318 - A131047 since the zeros of the triangle are masks for the terms of A131047. Thus A119467 + A131047 = Pascal's triangle. - Gary W. Adamson, Jun 12 2007
T(n,k) = (A007318(n,k) + A130595(n,k))/2, 0<=k<=n. - Reinhard Zumkeller, Mar 23 2014

Extensions

Edited by N. J. A. Sloane, Jul 14 2009

A210034 Triangle of coefficients of polynomials v(n,x) jointly generated with A210033; see the Formula section.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 6, 2, 1, 20, 20, 13, 7, 2, 1, 33, 38, 29, 16, 8, 2, 1, 54, 71, 60, 39, 19, 9, 2, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1, 376, 744, 894, 806
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
From Gus Wiseman, Jun 29 2025: (Start)
This appears to be the number of subsets of {1..n} with k>0 maximal anti-runs (sequences of consecutive elements increasing by more than 1). For example, the subset {1,2,4,5} has maximal anti-runs ((1),(2,4),(5)) so is counted under T(5,3). Row n = 5 counts the following:
{1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{2} {2,3} {2,3,4} {2,3,4,5}
{3} {3,4} {3,4,5}
{4} {4,5} {1,2,3,5}
{5} {1,2,4} {1,2,4,5}
{1,3} {1,2,5} {1,3,4,5}
{1,4} {1,3,4}
{1,5} {1,4,5}
{2,4} {2,3,5}
{2,5} {2,4,5}
{3,5}
{1,3,5}
For runs instead of anti-runs we have A034839, with n A202064. For reversed partitions instead of subsets we have A268193. (End)

Examples

			First five rows:
  1
  2    1
  4    2    1
  7    5    2   1
  12   10   6   2   1
First three polynomials v(n,x): 1, 2 + x, 4 + 2*x + x^2.
		

Crossrefs

Column k = 1 is A000071.
Row sums are A000225.
Column k = 2 is A001629.
Column k = 3 is A055243.
The version including k = 0 is A384893.
A034839 counts subsets by number of maximal runs, see also A202023, A202064.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210033 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210034 *)

Formula

u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A374356 a(n) is the greatest fibbinary number f <= n such that n - f is also a fibbinary number whose binary expansion has no common 1's with that of f (where fibbinary numbers correspond to A003714).

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 4, 5, 8, 9, 10, 10, 8, 9, 10, 10, 16, 17, 18, 18, 20, 21, 20, 21, 16, 17, 18, 18, 20, 21, 20, 21, 32, 33, 34, 34, 36, 37, 36, 37, 40, 41, 42, 42, 40, 41, 42, 42, 32, 33, 34, 34, 36, 37, 36, 37, 40, 41, 42, 42, 40, 41, 42, 42, 64, 65, 66, 66
Offset: 0

Views

Author

Rémy Sigrist, Jul 06 2024

Keywords

Comments

To compute a(n): replace every other bit with zero (starting with the second bit) in each run of consecutive 1's in the binary expansion of n.
From Gus Wiseman, Jul 11 2025: (Start)
This is the greatest binary rank of a sparse subset of the binary indices of n, where:
1. The binary indices of a nonnegative integer are the positions of 1 in its reversed binary expansion.
2. A set is sparse iff 1 is not a first difference.
3. The binary rank of a set {S_1,S_2,...} is Sum_i 2^(S_i-1).
(End)

Examples

			The first terms, in decimal and in binary, are:
  n   a(n)  bin(n)  bin(a(n))
  --  ----  ------  ---------
   0     0       0          0
   1     1       1          1
   2     2      10         10
   3     2      11         10
   4     4     100        100
   5     5     101        101
   6     4     110        100
   7     5     111        101
   8     8    1000       1000
   9     9    1001       1001
  10    10    1010       1010
  11    10    1011       1010
  12     8    1100       1000
  13     9    1101       1001
  14    10    1110       1010
  15    10    1111       1010
  16    16   10000      10000
		

Crossrefs

The union is A003714 (Fibbinary numbers).
For prime instead of binary indices we have A385216.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A166469 counts sparse submultisets of prime indices, maximal A385215.
A245564 counts sparse subsets of binary indices, maximal case A384883.
A319630 ranks sparse submultisets of prime indices, complement A104210.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    Table[Max@@fbi/@Select[Subsets[bpe[n]],FreeQ[Differences[#],1]&],{n,0,100}] (* Gus Wiseman, Jul 11 2025 *)
  • PARI
    a(n) = { my (v = 0, e, x, y, b); while (n, x = y = 0; e = valuation(n, 2); for (k = 0, oo, if (bittest(n, e+k), n -= b = 2^(e+k); [x, y] = [y + b, x], v += x; break;););); return (v); }

Formula

a(n) = A374354(n, A277561(n)-1).
a(n) = n - A374355(n).
a(n) <= n with equality iff n is a fibbinary number.

A381421 a(n) = Sum_{k=0..n} (k+1) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 2, 5, 22, 68, 206, 631, 1870, 5467, 15836, 45416, 129260, 365565, 1028122, 2877697, 8021010, 22274476, 61653850, 170152275, 468347046, 1286055927, 3523777912, 9635982160, 26302324504, 71674754873, 195015074610, 529846108989, 1437657038030, 3896050721940
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k+1) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 23 2025
  • Mathematica
    Table[Sum[(k+1)*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 23 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=1, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: ((1-x-x^2)^2 + 4*x^3) / ((1-x-x^2)^2 - 4*x^3)^2.
a(n) = 4*a(n-1) - 2*a(n-2) - 11*a(n-4) - 2*a(n-6) + 4*a(n-7) - a(n-8).

A382230 a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 3, 9, 46, 171, 591, 2033, 6714, 21606, 68308, 212370, 651234, 1974113, 5924277, 17623671, 52025858, 152539077, 444530073, 1288396257, 3715833732, 10668907932, 30507914696, 86912853588, 246755125332, 698353551105, 1970673504951, 5545952371509, 15568330002486
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+2, 2) * Binomial(2*k, 2*n-2*k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 22 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=2, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..1} 4^k * binomial(3,2*k) * (1-x-x^2)^(3-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^3.
a(n) = 6*a(n-1) - 9*a(n-2) + 2*a(n-3) - 18*a(n-4) + 30*a(n-5) + 7*a(n-6) + 30*a(n-7) - 18*a(n-8) + 2*a(n-9) - 9*a(n-10) + 6*a(n-11) - a(n-12).

A382470 a(n) = Sum_{k=0..n} binomial(k+3,3) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 4, 14, 80, 345, 1336, 5074, 18404, 64460, 220276, 736242, 2415128, 7798043, 24833160, 78131242, 243211412, 749926963, 2292771088, 6956262660, 20959406680, 62753991192, 186809711448, 553172044548, 1630068765840, 4781871397429, 13969460520764
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(k+3,3) * Binomial(2*k,2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 10 2025
  • Mathematica
    Table[Sum[Binomial[k+3,3]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+3, 3)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=3, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..2} 4^k * binomial(4,2*k) * (1-x-x^2)^(4-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^4.
a(n) = 8*a(n-1) - 20*a(n-2) + 16*a(n-3) - 26*a(n-4) + 88*a(n-5) - 48*a(n-6) + 24*a(n-7) - 163*a(n-8) + 24*a(n-9) - 48*a(n-10) + 88*a(n-11) - 26*a(n-12) + 16*a(n-13) - 20*a(n-14) + 8*a(n-15) - a(n-16).

A077445 Numbers k such that (k^2 - 8)/2 is a square.

Original entry on oeis.org

4, 20, 116, 676, 3940, 22964, 133844, 780100, 4546756, 26500436, 154455860, 900234724, 5246952484, 30581480180, 178241928596, 1038870091396, 6054978619780, 35291001627284, 205691031143924, 1198855185236260
Offset: 1

Views

Author

Gregory V. Richardson, Nov 09 2002

Keywords

Comments

The equation "(k^2 - 8)/2 is a square" is a version of the generalized Pell Equation "x^2 - D*y^2 = C".
a(n)^2 - 2*A077444(n) = 8.
From Wolfdieter Lang, Jan 18 2013: (Start)
4*(1-z)/(1-6*z+z^2) = Sum_{n>=0} a(n+1)*z^n is the formal power series for tan(4*x)/tan(x) if one lets
z = (tan(x))^2. For the numerator and denominator of this o.g.f. see A034867 and A034839, respectively. Convergence holds for 0 <= z < 3 - 2*sqrt(2), approximately 0.1715728753. This means for |x| < Pi/8, approximately 0.3926990818.
See also the o.g.f. given by Johannes W. Meijer, Aug 01 2010, in the formula section of A001653 = (this sequence)/4.
(End)
Positive values of x (or y) satisfying x^2 - 6*x*y + y^2 + 64 = 0. - Colin Barker, Feb 13 2014

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[4 (1 - x)/(1 - 6 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
  • PARI
    a(n)=if(n<1,0,subst(poltchebi(n)+poltchebi(n-1),x,3))

Formula

a(n) = (((3+2*sqrt(2))^n + (3-2*sqrt(2))^n) + ((3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1))) / 2.
a(n) = 6*a(n-1) - a(n-2) = 4*A001653(n).
G.f.: 4*(x-x^2)/(1-6*x+x^2).
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = sqrt(2)*(a^((2*n-1)/2) + b^((2*n-1)/2)). a(n) = sqrt(2*A003499(2*n-1)+4). - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n) = (A003499(n+1) + A003499(n))/2. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
a(n) = (2 + sqrt(2))*(3 + 2*sqrt(2))^n + (2 - sqrt(2))*(3- 2*sqrt(2))^n. - Antonio Alberto Olivares, Feb 23 2006
a(n) = 2*A075870(n). - Bruno Berselli, Nov 27 2013
G.f.: 2*Q(0)*x*(1-x)/(1-3*x), where Q(k) = 1 + 1/( 1 - x*(8*k-9)/( x*(8*k-1) - 3/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2013

A201701 Riordan triangle ((1-x)/(1-2*x), x^2/(1-2*x)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 3, 0, 0, 8, 8, 1, 0, 0, 16, 20, 5, 0, 0, 0, 32, 48, 18, 1, 0, 0, 0, 64, 112, 56, 7, 0, 0, 0, 0, 128, 256, 160, 32, 1, 0, 0, 0, 0, 256, 576, 432, 120, 9, 0, 0, 0, 0, 0, 512, 1280, 1120, 400, 50, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 03 2011

Keywords

Comments

Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Skewed version of triangle in A200139.
Triangle without zeros: A207537.
For the version with negative odd numbered columns, which is Riordan ((1-x)/(1-2*x), -x^2/(1-2*x)) see comments on A028297 and A039991. - Wolfdieter Lang, Aug 06 2014
This is an example of a stretched Riordan array in the terminology of Section 2 of Corsani et al. - Peter Bala, Jul 14 2015

Examples

			The triangle T(n,k) begins:
  n\k      0     1     2     3     4    5   6  7 8 9 10 11 ...
  0:       1
  1:       1     0
  2:       2     1     0
  3:       4     3     0     0
  4:       8     8     1     0     0
  5:      16    20     5     0     0    0
  6:      32    48    18     1     0    0   0
  7:      64   112    56     7     0    0   0  0
  8:     128   256   160    32     1    0   0  0 0
  9:     256   576   432   120     9    0   0  0 0 0
  10:    512  1280  1120   400    50    1   0  0 0 0  0
  11:   1024  2816  2816  1232   220   11   0  0 0 0  0  0
  ...  reformatted and extended. - _Wolfdieter Lang_, Aug 06 2014
		

Crossrefs

Diagonals sums are in A052980.
Cf. A028297, A081265, A124182, A131577, A039991 (zero-columns deleted, unsigned and zeros appended).
Cf. A028297 (signed version, zeros deleted). Cf. A034839.

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1 - #)/(1 - 2 #)&, #^2/(1 - 2 #)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 for k<0 or for n
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n>0.
Sum_{k=0..n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n), A087455(n), A146559(n), A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 respectively.
G.f.: (1-x)/(1-2*x-y*x^2). - Philippe Deléham, Mar 03 2012
From Peter Bala, Jul 14 2015: (Start)
Factorizes as A034839 * A007318 = (1/(1 - x), x^2/(1 - x)^2) * (1/(1 - x), x/(1 - x)) as a product of Riordan arrays.
T(n,k) = Sum_{i = k..floor(n/2)} binomial(n,2*i) *binomial(i,k). (End)

Extensions

Name changed, keyword:easy added, crossrefs A028297 and A039991 added, and g.f. corrected by Wolfdieter Lang, Aug 06 2014

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A382471 a(n) = Sum_{k=0..n} binomial(k+4,4) * binomial(2*k,2*n-2*k).

Original entry on oeis.org

1, 5, 20, 125, 610, 2611, 10815, 42610, 161005, 590155, 2106362, 7348265, 25141430, 84569395, 280246795, 916465742, 2961805180, 9470735650, 29994694130, 94172180660, 293326457342, 907028460410, 2786036875580, 8505001839950, 25815678641935, 77945771624609
Offset: 0

Author

Seiichi Manyama, Mar 28 2025

Keywords

Programs

  • Magma
    [&+[Binomial(k+4,4) * Binomial(2*k,2*n-2*k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Apr 10 2025
  • Mathematica
    Table[Sum[Binomial[k+4,4]*Binomial[2*k,2*n-2*k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+4, 4)*binomial(2*k, 2*n-2*k));
    
  • PARI
    my(N=4, M=30, x='x+O('x^M), X=1-x-x^2, Y=3); Vec(sum(k=0, (N+1)\2, 4^k*binomial(N+1, 2*k)*X^(N+1-2*k)*x^(Y*k))/(X^2-4*x^Y)^(N+1))
    

Formula

G.f.: (Sum_{k=0..2} 4^k * binomial(5,2*k) * (1-x-x^2)^(5-2*k) * x^(3*k)) / ((1-x-x^2)^2 - 4*x^3)^5.
Previous Showing 21-30 of 72 results. Next