cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A234973 Primes that are 6 plus the sum of three consecutive primes.

Original entry on oeis.org

29, 37, 47, 89, 103, 127, 137, 149, 179, 193, 229, 241, 257, 293, 307, 317, 401, 431, 463, 509, 557, 571, 587, 613, 719, 809, 823, 863, 937, 947, 967, 991, 1021, 1039, 1193, 1213, 1277, 1291, 1321, 1373, 1439, 1483, 1499, 1559, 1709, 1723, 1741, 1873, 1949, 1979
Offset: 1

Views

Author

Vincenzo Librandi, Jan 02 2014

Keywords

Comments

Primes of the form 6+A034961(k).

Crossrefs

Programs

  • Mathematica
    Select[Total[#] + 6&/@Partition[Prime[Range[200]], 3, 1], PrimeQ]

A244186 Primes which are the concatenation of five consecutive primes p, q, r, s, t while the sum (p + q + r + s + t) is another prime.

Original entry on oeis.org

711131719, 5359616771, 6771737983, 149151157163167, 401409419421431, 479487491499503, 757761769773787, 14091423142714291433, 18111823183118471861, 21132129213121372141, 26892693269927072711, 27192729273127412749, 36133617362336313637, 37613767376937793793
Offset: 1

Views

Author

K. D. Bajpai, Jun 21 2014

Keywords

Comments

Subsequence of A086041.
Numbers: Concatenation of 5 consecutive primes at A132905.

Examples

			711131719 is in the sequence because the concatenation of [7, 11, 13, 17, 19] = 711131719 which is prime. The sum [7 + 11 + 13 + 17 + 19] = 67 is another prime.
5359616771 is in the sequence because the concatenation of [53, 59, 61, 67, 71] = 5359616771 which is prime. The sum [53 + 59 + 61 + 67 + 71] = 311 is another prime.
		

Crossrefs

Programs

  • Mathematica
    FromDigits[Flatten[IntegerDigits/@#]]&/@Select[Partition[Prime[Range[ 1000]],5,1],AllTrue[{Total[#],FromDigits[Flatten[ IntegerDigits/@ #]]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 24 2014 *)

A270639 Fermat pseudoprimes (A001567) that are the sum of three consecutive primes.

Original entry on oeis.org

13741, 16705, 150851, 208465, 249841, 252601, 258511, 410041, 486737, 635401, 1052503, 1082401, 1457773, 1507963, 1579249, 1615681, 2113921, 2184571, 3090091, 3375487, 3726541, 4682833, 4895065, 5044033, 5133201, 6233977, 6255341, 6350941, 6474691, 6912079, 7259161
Offset: 1

Views

Author

Altug Alkan, Mar 20 2016

Keywords

Comments

In other words, Fermat pseudoprimes to base 2 of the form p + q + r where p, q and r are consecutive primes.
If a Fermat pseudoprime is the sum of n consecutive primes, it is so obvious that the minimum value of n is 3.
Intersection of A001567 and A034961.

Examples

			4567, 4583 and 4591 are consecutive primes and their sum is 13741, a Fermat pseudoprime.
84191, 84199 and 84211 are consecutive primes and their sum is 252601, a Fermat pseudoprime.
		

Crossrefs

Programs

  • PARI
    isA001567(n) = {Mod(2, n)^n==2 && !ispseudoprime(n) && n > 1}
    a034961(n) = my(p=prime(n), q=nextprime(p+1)); p+q+nextprime(q+1);
    for(n=1, 200000, if(isA001567(a034961(n)), print1(a034961(n), ", ")));

A281960 Primes that are the sum of three consecutive odd semiprimes.

Original entry on oeis.org

61, 79, 107, 139, 163, 191, 211, 263, 271, 373, 443, 617, 719, 733, 761, 971, 991, 1097, 1129, 1231, 1259, 1373, 1439, 1531, 1543, 1597, 1663, 1697, 1733, 1753, 1777, 1831, 2053, 2081, 2099, 2137, 2161, 2213, 2383, 2423, 2543, 2677, 2687, 2719, 2777, 2843, 2917
Offset: 1

Views

Author

K. D. Bajpai, Feb 03 2017

Keywords

Examples

			a(1) = 61 is a prime and 61 = 15 + 21 + 25; the sum of three consecutive odd semiprimes.
a(2) = 79 is a prime and 79 = 21 + 25 + 33; the sum of three consecutive odd semiprimes.
		

Crossrefs

Programs

  • Mathematica
    Select[Total /@ Partition[Select[Range[2000], Plus @@ Last /@ FactorInteger[#] == 2 && OddQ[#] &], 3, 1], PrimeQ]
  • PARI
    list(lim)=my(v=List(),u=v,t,L=lim+10); forprime(p=3,L\3, forprime(q=3,min(p,L\p), listput(u,p*q))); u=Set(u); for(i=3,#u, if(isprime(t=u[i-2]+u[i-1]+u[i]), listput(v,t))); while((t=u[#u-1]+u[#u]+L++)lim, break); if(isprime(t), listput(v,t)))); Vec(v) \\ Charles R Greathouse IV, Feb 03 2017

A289361 Least sum s of three consecutive primes such that s is a multiple of the n-th prime.

Original entry on oeis.org

10, 15, 10, 49, 121, 143, 187, 551, 23, 319, 31, 407, 41, 301, 235, 159, 59, 1891, 1943, 71, 803, 395, 83, 2759, 97, 1717, 3193, 749, 109, 565, 3175, 131, 2329, 1807, 7301, 6493, 471, 1793, 1169, 173, 1611, 5611, 2101, 3281, 985, 199, 211, 223, 1135, 4351, 5359, 11233, 2651
Offset: 1

Views

Author

Zak Seidov, Jul 04 2017

Keywords

Comments

Are all terms distinct? Is a(1)=a(3)=10 the only case of equality?

Examples

			a(1)=10=A034961(1), a(2)=15=A034961(2), a(3)=319=A034961(27).
		

Crossrefs

Cf. A034961, A034962 (subsequence).

Programs

  • Mathematica
    Table[Function[p, k = 1; While[! Divisible[Set[s, Total@ Prime@ Range[k, k + 2]], p], k++]; s]@ Prime@ n, {n, 53}] (* or *)
    s = Total /@ Partition[Prime@ Range[10^4], 3, 1]; Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 53}] (* Michael De Vlieger, Jul 04 2017 *)
  • PARI
    a(n)=p = 2; q = 3; pn = prime(n); forprime(r=5,,if (((s=p+q+r) % pn) == 0, return (s)); p = q; q = r;); \\ Michel Marcus, Jul 04 2017
    
  • PARI
    isA034961(n)=my(p=precprime(n\3),q=nextprime(n\3+1),r=n-p-q); if(r>q, r==nextprime(q+2), r==precprime(p-1) && r)
    a(n,p=prime(n))=if(p==5, return(10)); my(k=1); while(!isA034961(p*k), k+=2); p*k \\ Charles R Greathouse IV, Jul 05 2017

A335969 Sphenic numbers that are also the sum of three consecutive primes.

Original entry on oeis.org

1015, 1533, 1645, 2233, 2737, 2915, 3219, 3515, 3745, 3815, 4301, 4503, 4565, 4623, 4697, 4921, 5289, 5621, 6055, 6095, 6213, 6251, 6409, 7055, 7347, 7657, 7847, 8099, 8455, 8569, 8687, 8729, 9499, 9581, 9955, 10105, 10153, 10295, 10735, 11155, 11297, 11315, 11803, 12665, 12805, 12845
Offset: 1

Views

Author

Zak Seidov, Jul 04 2020

Keywords

Comments

Intersection of A007304 and A034961.
Includes 15*p where p, 5*p-14, 5*p-2 and 5*p+16 are consecutive primes. Dickson's conjecture implies there are infinitely many such terms. - Robert Israel, Nov 24 2022

Examples

			1015 = A007304(140) = A034961(67), 1533 = A007304(226) = A034961(96).
		

Crossrefs

Programs

  • Maple
    P:= select(isprime, [seq(i,i=3..10^4,2)]):
    P3:= P[1..-3] + P[2..-2] + P[3..-1]:
    filter:= proc(t) local F; F:= ifactors(t)[2]; nops(F) = 3 and F[1,2]=1 and F[2,2] = 1 and F[3,2]=1 end proc:
    select(filter, P3); # Robert Israel, Nov 24 2022
  • Mathematica
    Intersection[ Select[Range[105, 40000,2], 3 == PrimeOmega[#] == PrimeNu[#] &], Total /@ Partition[Prime[Range[40000]], 3, 1]]

A351579 Primes p such that the sum of p and the next two primes is the product of two consecutive primes.

Original entry on oeis.org

3, 43, 3671, 51473, 53051, 64811, 71143, 121591, 137383, 154111, 161459, 228521, 284573, 344053, 433141, 544403, 679709, 702743, 767071, 995303, 1158139, 1267481, 1301507, 1320023, 1342667, 1512293, 1682987, 1839221, 1982891, 2022101, 2174287, 2198153, 2370943, 2403061, 2770549, 4148923, 4368121
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 13 2022

Keywords

Comments

A000040(k) for k such that A034961(k) is in A006094.
The Generalized Bunyakovsky Conjecture implies that, for example, there are infinitely many terms of the form 12*s^2+12*s-1 where the next two primes are 12*s^2+12*s+1 and 12*s^2+12*s+5 and the sum of these is (6*s+1)*(6*s+5).

Examples

			a(3) = 3671 is a term because 3671, 3673, 3677 are three consecutive primes with 3671+3673+3677 = 11021 = 103*107 and 103 and 107 are two consecutive primes.
		

Crossrefs

Programs

  • Maple
    q:= proc(n) local r,s;
      r:= nextprime(floor(sqrt(n)));
      s:= n/r;
      s::integer and s = prevprime(r)
    end proc:
    P:= select(isprime,[2,seq(i,i=3..10^7)]):
    S:= [0,op(ListTools:-PartialSums(P))]:
    map(t -> P[t], select(i -> q(S[i+3]-S[i]), [$1..nops(S)-3]));
  • Mathematica
    prodQ[n_] := Module[{f = FactorInteger[n]}, f[[;; , 2]] == {1, 1} && f[[2, 1]] == NextPrime[f[[1, 1]]]]; q[p_] := PrimeQ[p] && prodQ[p + Plus @@ NextPrime[p, {1, 2}]]; Select[Range[5*10^6], q] (* Amiram Eldar, Feb 14 2022 *)
  • PARI
    isok(p) = {if (isprime(p), my(q=nextprime(p+1), f=factor(p+q+nextprime(q+1))); (omega(f) == 2) && (bigomega(f) == 2) && (f[2,1] == nextprime(f[1,1]+1)););} \\ Michel Marcus, Feb 14 2022

A125270 Coefficient of x^2 in polynomial whose zeros are 5 consecutive primes starting with the n-th prime.

Original entry on oeis.org

1358, 3954, 10478, 22210, 43490, 78014, 129530, 206650, 324350, 466270, 621466, 853742, 1132130, 1436690, 1870850, 2388050, 2886370, 3440410, 4133410, 4904906, 5926654, 7195670, 8425430, 9792950, 11040910, 12098990, 13917898, 16097810
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2007

Keywords

Comments

Sums of all distinct products of 3 out of 5 consecutive primes, starting with the n-th prime; value of 3rd elementary symmetric function on the 5 consecutive primes.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[AppendTo[a, (Prime[x] Prime[x + 1] Prime[x + 2] + Prime[x] Prime[x + 1] Prime[x + 3] + Prime[x] Prime[x + 1] Prime[x + 4] + Prime[x] Prime[x + 2] Prime[x + 3] + Prime[x] Prime[x + 2] Prime[x + 4] + Prime[x] Prime[x + 3] Prime[x + 4] + Prime[x + 1] Prime[x + 2] Prime[x + 3] + Prime[x + 1] Prime[x + 2] Prime[x + 4] + Prime[x + 1] Prime[x + 3] Prime[x + 4] + Prime[x + 2] Prime[x + 3] Prime[x + 4])], {x, 1, 100}]; a
    fcp[{p_,q_,r_,s_,t_}]:=p*q(r+s+t)+(p+q)r(s+t)+(p+q+r)s*t; fcp/@Partition[ Prime[ Range[40]],5,1] (* Harvey P. Dale, Sep 05 2014 *)

Formula

Let p = Prime(n), q = Prime(n+1), r = Prime(n+2), s = Prime(n+3) and t = Prime(n+4). Then a(n) = p q (r+s+t) + (p + q) r (s + t) + (p + q + r) s t.

Extensions

Edited and corrected by Franklin T. Adams-Watters, Jan 23 2007

A163488 Primes p such that 5*p is a sum of 3 consecutive primes.

Original entry on oeis.org

2, 3, 47, 79, 113, 197, 227, 257, 263, 317, 347, 383, 431, 443, 491, 499, 541, 557, 617, 757, 811, 887, 929, 977, 1021, 1087, 1093, 1129, 1231, 1237, 1433, 1511, 2111, 2129, 2213, 2347, 2543, 2551, 2609, 2657, 2671, 2803, 2837, 2999, 3011, 3049, 3119, 3187
Offset: 1

Views

Author

Keywords

Comments

Primes of the form A034961(k)/5, associated with k=1, 2, 21, 31, 42, 66,... - R. J. Mathar, Aug 02 2009

Examples

			p=2 is in the sequence because 2*5=10=2+3+5.
p=3 is in the sequence because 3*5=15=3+5+7.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[p=(Prime[n]+Prime[n+1]+Prime[n+2])/5],AppendTo[lst, p]],{n,7!}];lst
    cp3Q[n_]:=Module[{mid=Floor[PrimePi[(5n)/3]],tst},tst=Total/@ Partition[ Prime[ Range[mid-10,mid+10]],3,1];MemberQ[tst,5n]]; Select[ Prime[ Range[ 500]],cp3Q]//Quiet (* Harvey P. Dale, Jan 02 2018 *)

Extensions

Entries checked by R. J. Mathar, Aug 02 2009

A288172 a(n) = smallest number that is the sum of 2n - 1, 2n + 1, and 2n + 3 consecutive primes.

Original entry on oeis.org

83, 311, 55813, 42161, 42161, 714295, 113469, 5539053, 20919, 1439643, 7134703, 13432571, 3337639, 6082489, 25241217, 25241217, 2389687, 54309171, 4142423, 63388405, 21570897, 15843991, 62196365, 233917295, 11679841, 96905683, 229821375, 460000131, 125571943
Offset: 1

Views

Author

Zak Seidov, Jun 06 2017

Keywords

Examples

			n=1: 83 = A000040(23) = A034961(9) = A034964(5) = 23+29+31 = 11+13+17+19+23.
n=20: 63388405 is the sum of 39, 41 and 43 consecutive primes, A000040(122889)+...+A000040(122889+38) = A000040(117360)+...+A000040(122889+40) = A000040(112314)+...+A000040(112314+42).
		

Crossrefs

Cf. A213174.

Extensions

More terms from Giovanni Resta, Jun 13 2017
Previous Showing 41-50 of 53 results. Next