A163253
An interspersion: the order array of the odd-numbered columns of the double interspersion at A161179.
Original entry on oeis.org
1, 4, 2, 9, 5, 3, 16, 10, 7, 6, 25, 17, 13, 11, 8, 36, 26, 21, 18, 14, 12, 49, 37, 31, 27, 22, 19, 15, 64, 50, 43, 38, 32, 28, 23, 20, 81, 65, 57, 51, 44, 39, 33, 29, 24, 100, 82, 73, 66, 58, 52, 45, 40, 34, 30, 121, 101, 91, 83, 74, 67, 59, 53, 46, 41, 35
Offset: 1
Corner:
1....4....9...16...25
2....5...10...17...26
3....7...13...21...31
6...11...18...27...38
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the even-numbered columns, leaving
1....7...17...
2....8...18...
5...13...25...
9...19...33...
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
A035104
First differences give (essentially) A028242.
Original entry on oeis.org
1, 4, 9, 13, 19, 24, 31, 37, 45, 52, 61, 69, 79, 88, 99, 109, 121, 132, 145, 157, 171, 184, 199, 213, 229, 244, 261, 277, 295, 312, 331, 349, 369, 388, 409, 429, 451, 472, 495, 517, 541, 564, 589, 613, 639, 664, 691, 717, 745, 772, 801, 829, 859, 888, 919
Offset: 0
-
[(5+3*(-1)^n+28*n+2*n^2)/8: n in [0..60]]; // Vincenzo Librandi, Oct 20 2013
-
CoefficientList[Series[(3 x^3 - x^2 - 2 x - 1)/((x - 1)^3 (x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 20 2013 *)
A064797
Largest integer m such that every permutation (p_1, ..., p_n) of (1, ..., n) satisfies lcm(p_i, p_{i+1}) >= m for some i, 1 <= i <= n, where p_{n+1} = p_1.
Original entry on oeis.org
1, 2, 6, 6, 12, 12, 15, 15, 18, 18, 24, 24, 35, 35, 35, 35, 44, 44, 55, 55, 55, 55, 68, 68, 68, 68, 68, 68, 85, 85, 102, 102, 102, 102, 102, 102, 119, 119, 119, 119, 145, 145, 174, 174, 174, 174, 203, 203, 203, 203, 203, 203, 232, 232, 232, 232, 232, 232, 261, 261
Offset: 1
n=4: we must arrange the numbers 1..4 in a circle so that the max of the lcm of pairs of adjacent terms is minimized. The answer is 1423, with max lcm = 6, so a(4) = 6.
-
Table[Min[Max[LCM@@@Partition[#,2,1,1]]&/@Permutations[Range[n]]], {n,10}] (* Harvey P. Dale, Oct 05 2011 *) (* The program takes a long time to run and uses a great deal of memory *)
A035107
First differences give (essentially) A028242.
Original entry on oeis.org
3, 9, 17, 29, 44, 64, 88, 118, 153, 195, 243, 299, 362, 434, 514, 604, 703, 813, 933, 1065, 1208, 1364, 1532, 1714, 1909, 2119, 2343, 2583, 2838, 3110, 3398, 3704, 4027, 4369, 4729, 5109, 5508, 5928, 6368, 6830, 7313, 7819, 8347, 8899, 9474
Offset: 0
-
[(4*n^3+54*n^2+212*n+153-9*(-1)^n)/48: n in [0..50]]; // Vincenzo Librandi, Oct 21 2013
-
LinearRecurrence[{3,-2,-2,3,-1},{3,9,17,29,44},50] (* Harvey P. Dale, Oct 20 2013 *)
CoefficientList[Series[(2 x^3 - 4 x^2 + 3)/((x - 1)^4 (x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)
A064817
Maximal number of squares among the n-1 numbers p_i + p_{i+1}, 1 <= i <= n-1, where (p_1, ..., p_n) is any permutation of (1, ..., n).
Original entry on oeis.org
0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 16, 17, 18, 19, 20, 22, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
Offset: 1
n=8: take 2,7,8,1,3,6,4,5 to get 5 squares: 2+7, 8+1, 1+3, 3+6, 4+5; a(8) = 5.
(1,8,9,7,2,14,11,5,4,12,13,3,6,10) gives 12 squares and no permutation of (1..14) gives more, so a(14)=12.
- Bernardo Recamán Santos, Challenging Brainteasers, Sterling, NY, 2000, page 71, shows a(15) = 14 using 9,7,2,14,11,5,4,12,13,3,6,10,15,1,8.
-
a[n_] := Which[n == 1, 0, n > 30, n - 1, True, tour = FindShortestTour[Range[n], DistanceFunction -> Function[{i, j}, If[IntegerQ[Sqrt[i + j]], -1, 0]]] // Last; cnt = 0; Do[If[IntegerQ[Sqrt[tour[[i]] + tour[[i + 1]]]], cnt++], {i, 1, n}]; cnt]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 69}] (* Jean-François Alcover, Nov 04 2016 *)
More terms from
John W. Layman and Charles K. Layman (cklayman(AT)juno.com), Nov 07 2001
A138585
The sequence is formed by concatenating subsequences S1, S2, ... each of finite length. S1 consists of the element 1. The n-th subsequence consist of numbers {(n/2)*(n/2 - 1)+ 1, ..., (n/2)*(n/2 + 1)} for n even, {((n-1)/2)^2, ..., (n-1)/2 * ((n-1)/2 + 2)} for n odd.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 3, 4, 5, 6, 4, 5, 6, 7, 8, 7, 8, 9, 10, 11, 12, 9, 10, 11, 12, 13, 14, 15, 13, 14, 15, 16, 17, 18, 19, 20, 16, 17, 18, 19, 20, 21, 22, 23, 24, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 31, 32, 33, 34, 35
Offset: 1
S1: {1}
S2: {1,2}
S3: {1,2,3,}
S4: {3,4,5,6}
S5: {4,5,6,7,8}
S6: {7,8,9,10,11,12}, etc.
so concatenation of S1/S2/S3/S4/S5/S6/... gives:
1,1,2,1,2,3,3,4,5,6,4,5,6,7,8,7,8,9,10,11,12,...
-
S := proc(n) local s: if(n=1)then s:=1: elif(n mod 2 = 0)then s:=(n/2)*(n/2 -1)+1: else s:=((n-1)/2)^2: fi: seq(k,k=s..s+n-1): end: seq(S(n),n=1..12); # Nathaniel Johnston, Oct 01 2011
A265436
a(n) is the least m (1 <= m <= n) such that the set of pairs (x, y) of distinct terms from [m, n] can be ordered in such a way that the corresponding sums (x+y) and products (x*y) are monotonic.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 26, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 54, 55
Offset: 1
For n=1, the only possible interval is [1,1], the set of distinct pairs is empty, so it satisfies the desired property, hence m=1 and a(1)=1.
For n=2, the candidate interval is [1,2], the set of distinct pairs is reduced to (1,2), which satisfies the order property hence m=1 and a(2)=1.
For n=3, the candidate interval is [1,2,3], with distinct pairs (1,2), (1,3), (2,3); and with corresponding sums (3,4,5) and products (2,3,6), that are monotonically ordered, hence m=1, so a(3)=1.
For n=5, the interval [1,5] fails to produce an ordering where both sums and products follow a monotonic order. But with m=2, here is a correct ordering: (5,6), (6,8), (7,10), (7,12), (8,15), (9,20); hence m=2 and a(5)=2.
-
pairs[m_, n_] := Flatten[Table[{x, y}, {x, m, n-1}, {y, x+1, n}], 1]; csum[ {x1_, y1_}, {x2_, y2_}] := x1+y1 <= x2+y2; cprod[{x1_, y1_}, {x2_, y2_}] := Which[x1 y1 < x2 y2, True, x1 y1 == x2 y2, x1+y1 <= x2+y2, True, False ]; a[1]=1; a[n_] := For[m=1, mJean-François Alcover, Dec 20 2015 *)
-
vpairs(n, m, nbp) = {v = vector(nbp); k = 1; for (i=m, n-1, for (j=i+1, n, v[k] = [i, j]; k++;)); v;}
vsums(v) = vector(#v, k, v[k][1] + v[k][2]);
vprods(v) = vector(#v, k, v[k][1] * v[k][2]);
cmpp(va, vb) = {sa = va[1]+va[2]; sb = vb[1]+vb[2]; if (sa > sb, return (1)); if (sa < sb, return (-1)); pa = va[1]*va[2]; pb = vb[1]*vb[2]; pa - pb;}
isok(n, m) = {nb = n-m+1; nbp = nb*(nb-1)/2; v = vpairs (n, m, nbp); perm = vecsort(v,cmpp,1); vs = vsums(v); vp = vprods(v); vss = vector(#vs, k, vs[perm[k]]); vps = vector(#vp, k, vp[perm[k]]); (vecsort(vps) == vps) && (vecsort(vss) == vss);}
one(n, m) = {ok = 0; while (!ok, if (! isok(n, m), m++, ok=1)); m;}
lista(nn) = {m = 1; for (n=1, nn, newm = one(n, m); print1(newm, ", "); m = newm;);}
\\ Michel Marcus, Dec 09 2015
-
def f1(X):
x = X
for y in range (1,X + 1): # ie 1 thru X
x = ((((((2 + y) * y) // (2 + x)) - 2) + x) // (2 + x)) + x # floor division
return x
def f0(X):
return (f1(X) + 1) - X
for x in range(1000):
print (f0(x))
# Bill McEachen, Jun 12 2024 (via the QSYNT link)
A289870
a(n) = n*(n + 1) for n odd, otherwise a(n) = (n - 1)*(n + 1).
Original entry on oeis.org
-1, 2, 3, 12, 15, 30, 35, 56, 63, 90, 99, 132, 143, 182, 195, 240, 255, 306, 323, 380, 399, 462, 483, 552, 575, 650, 675, 756, 783, 870, 899, 992, 1023, 1122, 1155, 1260, 1295, 1406, 1443, 1560, 1599, 1722, 1763, 1892, 1935, 2070, 2115, 2256, 2303, 2450, 2499
Offset: 0
-
a[n_] := (n + 1)(n - 1 + Mod[n, 2]); Table[a[n], {n, 0, 50}]
-
a(n)=if(n%2, n, n-1)*(n+1) \\ Charles R Greathouse IV, Jul 14 2017
Comments