cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A035219 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 37.

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 2, 0, 3, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 2, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 37. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[37, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
  • PARI
    my(m = 37); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(37, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(37, d).
Multiplicative with a(37^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(37, p) = -1 (p is in A038914), and a(p^e) = e+1 if Kronecker(37, p) = 1 (p is in A191027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(sqrt(37)+6)/sqrt(37) = 0.819292168725... . (End)

A035215 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 33.

Original entry on oeis.org

1, 2, 1, 3, 0, 2, 0, 4, 1, 0, 1, 3, 0, 0, 0, 5, 2, 2, 0, 0, 0, 2, 0, 4, 1, 0, 1, 0, 2, 0, 2, 6, 1, 4, 0, 3, 2, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 5, 1, 2, 2, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 4, 0, 7, 0, 2, 2, 6, 0, 0, 0, 4, 0, 4, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 33. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[33, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
  • PARI
    my(m = 33); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(33, d)); \\ Amiram Eldar, Nov 19 2023

Formula

From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(33, d).
Multiplicative with a(p^e) = 1 if Kronecker(33, p) = 0 (p = 3 or 11), a(p^e) = (1+(-1)^e)/2 if Kronecker(33, p) = -1 (p is in A038908), and a(p^e) = e+1 if Kronecker(33, p) = 1 (p is in A038907 \ {3, 11}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(4*sqrt(33)+23)/sqrt(33) = 1.332797188186... . (End)

A035251 Positive numbers of the form x^2 - 2y^2 with integers x, y.

Original entry on oeis.org

1, 2, 4, 7, 8, 9, 14, 16, 17, 18, 23, 25, 28, 31, 32, 34, 36, 41, 46, 47, 49, 50, 56, 62, 63, 64, 68, 71, 72, 73, 79, 81, 82, 89, 92, 94, 97, 98, 100, 103, 112, 113, 119, 121, 124, 126, 127, 128, 136, 137, 142, 144, 146, 151, 153, 158, 161, 162, 164, 167, 169, 175, 178
Offset: 1

Views

Author

Keywords

Comments

x^2 - 2y^2 has discriminant 8. - N. J. A. Sloane, May 30 2014
A positive number n is representable in the form x^2 - 2y^2 iff every prime p == 3 or 5 (mod 8) dividing n occurs to an even power.
Indices of nonzero terms in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m=2 (A035185). [amended by Georg Fischer, Sep 03 2020]
Also positive numbers of the form 2x^2 - y^2. If x^2 - 2y^2 = n, 2(x+y)^2 - (x+2y)^2 = n. - Franklin T. Adams-Watters, Nov 09 2009
Except 2, prime numbers in this sequence have the form p=8k+-1. According to the first comment, prime factors of the forms (8k+-3),(8k+-5) occur in x^2 - 2y^2 in even powers. If x^2 - 2y^2 is a prime number, those powers must be 0. Only factors 8k+-1 remain. Example: 137=8*17+1. - Jerzy R Borysowicz, Nov 04 2015
The product of any two terms of the sequence is a term too. A proof follows from the identity: (a^2-2b^2)(c^2-2d^2) = (2bd+ac)^2 - 2(ad+bc)^2. Example: 127*175 has form x^2-2y^2, with x=9335, y=6600. - Jerzy R Borysowicz, Nov 28 2015
Primitive terms (not a product of earlier terms that are greater than 1 in the sequence) are A055673 except 1. - Charles R Greathouse IV, Sep 10 2016
Positive numbers of the form u^2 + 2uv - v^2. - Thomas Ordowski, Feb 17 2017
For integer numbers z, a, k and z^2+a^2>0, k>=0: z^(4k) + a^4 is in A035251 because z^(4k) + a^4 = (z^(2k) + a^2)^2 - 2(a*z^k)^2. Assume 0^0 = 1. Examples: 3^4 + 1^4 = 82, 3^8+4^4=6817. - Jerzy R Borysowicz, Mar 09 2017
Numbers that are the difference between two legs of a Pythagorean right triangle. - Michael Somos, Apr 02 2017

Examples

			The (x,y) pairs, with minimum x, that solve the equation are (1,0), (2,1), (2,0), (3,1), (4,2), (3,0), (4,1), (4,0), (5,2), (6,3), (5,1), (5,0), (6,2), (7,3), (8,4), (6,1), (6,0), (7,2), (8,3), (7,1), (7,0), (10,5), (8,2), ... If the positive number is a perfect square, y=0 yields a trivial solution. - _R. J. Mathar_, Sep 10 2016
		

Crossrefs

Primes: A038873.
Complement of A232531. - Thomas Ordowski and Altug Alkan, Feb 09 2017

Programs

  • Maple
    filter:= proc(n) local F;
      F:= select(t -> t[1] mod 8 = 3 or t[1] mod 8 = 5, ifactors(n)[2]);
      map(t -> t[2],F)::list(even);
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Dec 01 2015
  • Mathematica
    Reap[For[n = 1, n < 200, n++, r = Reduce[x^2 - 2 y^2 == n, {x, y}, Integers]; If[r =!= False, Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 31 2016 *)
  • PARI
    select(x -> x, direuler(p=2,201,1/(1-(kronecker(2,p)*(X-X^2))-X)), 1) \\ Fixed by Andrey Zabolotskiy, Jul 30 2020
    
  • PARI
    {a(n) = my(m, c); if( n<1, 0, c=0; m=0; while( cMichael Somos, Aug 17 2006 */
    
  • PARI
    is(n)=#bnfisintnorm(bnfinit(z^2-2),n) \\ Ralf Stephan, Oct 14 2013
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A035251_gen(): # generator of terms
        return filter(lambda n:all(not((2 < p & 7 < 7) and e & 1) for p, e in factorint(n).items()),count(1))
    A035251_list = list(islice(A035251_gen(),30)) # Chai Wah Wu, Jun 28 2022

Extensions

Better description from Sharon Sela (sharonsela(AT)hotmail.com), Mar 10 2002

A035184 a(n) = Sum_{d|n} Kronecker(-1, d).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
		

Crossrefs

Inverse Moebius transform of A034947.
Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), this sequence (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */

Formula

a(n) is multiplicative with a(2^e) = e + 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). - Michael Somos, Jan 05 2012
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n).
Dirichlet g.f.: zeta(s)*beta(s)/(1 - 2^(-s)), where beta is the Dirichlet beta function. - Ralf Stephan, Mar 27 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 = 1.570796... (A019669). - Amiram Eldar, Oct 17 2022

A035181 a(n) = Sum_{d|n} Kronecker(-9, d).

Original entry on oeis.org

1, 2, 1, 3, 2, 2, 0, 4, 1, 4, 0, 3, 2, 0, 2, 5, 2, 2, 0, 6, 0, 0, 0, 4, 3, 4, 1, 0, 2, 4, 0, 6, 0, 4, 0, 3, 2, 0, 2, 8, 2, 0, 0, 0, 2, 0, 0, 5, 1, 6, 2, 6, 2, 2, 0, 0, 0, 4, 0, 6, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 3, 0, 0, 4, 0, 10, 1, 4, 0, 0, 4, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 9, 2, 4, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			x + 2*x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 4*x^8 + x^9 + 4*x^10 + 3*x^12 + ...
		

Crossrefs

Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), A035184 (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -9, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 24 2011 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -9, d)))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -9, p) * X))) [n])} \\ Michael Somos, Jun 24 2011
    
  • PARI
    {a(n) = local(A, p, e); if( n<0, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, e+1, if( p==3, 1, if( p%4==1, e+1, (1 + (-1)^e)/2))))))} \\ Michael Somos, Jun 24 2011
    
  • PARI
    A035181(n)=sumdivmult(n,d,kronecker(-9,d)) \\ M. F. Hasler, May 08 2018

Formula

From Michael Somos, Jun 24 2011: (Start)
a(n) is multiplicative with a(2^e) = e + 1, a(3^e) = 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4) and p > 3.
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker(-9, n). Sum_{n>0} a(n) / n^s = Product_{p prime} 1 / ((1 - p^-s) * (1 - Kronecker(-9, p) * p^-s)). (End)
a(3*n) = a(n). a(2*n + 1) = A125079(n). a(4*n + 1) = A008441(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/3 = 2.094395... (A019693). - Amiram Eldar, Oct 17 2022

A327851 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A111374.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 6, 8, 12, 15, 19, 24, 30, 36, 47, 57, 74, 88, 112, 130, 160, 190, 232, 277, 333, 399, 471, 554, 656, 768, 908, 1060, 1256, 1452, 1702, 1968, 2294, 2646, 3068, 3549, 4093, 4710, 5418, 6211, 7121, 8138, 9331, 10625, 12150, 13817, 15749, 17858, 20290, 23000, 26054
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2019

Keywords

Comments

a(n) > 0.

Crossrefs

Convolution inverse of A327852.
Product_{k>=1} (1 - x^k)^(- Sum_{d|k} (b/d)), where (m/n) is the Kronecker symbol: this sequence (b=2), A107742 (b=4), A327716 (b=5).

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[QPochhammer[x^(8*j - 3)] * QPochhammer[x^(8*j - 5)]/(QPochhammer[x^(8*j - 7)] * QPochhammer[x^(8*j - 1)]), {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))

Formula

G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5))) / ((1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7)))).
G.f.: Product_{k>=1} (1-x^k)^(-A035185(k)).

A327852 Expansion of Product_{k>=1} B(x^k), where B(x) is the g.f. of A092869.

Original entry on oeis.org

1, -1, -1, 1, -1, 1, 1, -3, 1, 2, 0, 2, -2, -2, -1, 3, 1, -5, 2, 0, 0, 8, -4, -7, 5, -2, 0, 1, -8, 0, 12, 2, -3, -1, -7, 9, 4, -7, -7, -6, 10, 9, 2, -6, -14, 15, 3, -15, 19, -30, 6, 37, -31, 10, 9, -23, 20, 4, -29, 4, 14, 4, -13, 23, -14, -19, 39, -29, -23, 35, 0, -34, 48
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2019

Keywords

Crossrefs

Product_{k>=1} (1 - x^k)^(Sum_{d|k} (b/d)), where (m/n) is the Kronecker symbol: this sequence (b=2), A288007 (b=4), A327688 (b=5).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-x^k)^sumdiv(k, d, kronecker(2, d))))

Formula

G.f.: Product_{i>=1} Product_{j>=1} (1-x^(i*(8*j-1))) * (1-x^(i*(8*j-7))) / ((1-x^(i*(8*j-3))) * (1-x^(i*(8*j-5)))).
G.f.: Product_{k>=1} (1-x^k)^A035185(k).

A370411 Square array T(n, k) = denominator( zeta_r(2*n) * sqrt(A003658(k + 2)) / Pi^(4*n) ), read by antidiagonals, where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).

Original entry on oeis.org

1, 75, 1, 16875, 24, 1, 221484375, 34560, 18, 1, 116279296875, 116121600, 58320, 39, 1, 12950606689453125, 780337152000, 440899200, 296595, 51, 1, 4861333986053466796875, 8899589151129600, 6666395904000, 68420017575, 663255, 63, 1, 677114376628875732421875
Offset: 0

Views

Author

Thomas Scheuerle, Feb 22 2024

Keywords

Examples

			The array begins:
           1,            1,             1,              1,                 1
          75,           24,            18,             39,                51
       16875,        34560,         58320,         296595,            663255
   221484375,    116121600,     440899200,    68420017575,       20126472975
116279296875, 780337152000, 6666395904000, 93393323989875, 10382542981248375
		

Crossrefs

Cf. A370412 (numerators).
Cf. A002432 (denominators zeta(2*n)/Pi^(2*n)).
Cf. A046988 (numerators zeta(2*n)/Pi^(2*n)).
Coefficients of Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • PARI
    \p 700
    row(n) = {v=[]; for(k=2, 30, if(isfundamental(k), v=concat(v, denominator(bestappr(sqrt(k)*lfun(x^2-(k%2)*x-floor(k/4), 2*n)/Pi^(4*n)))))); v}
    z(n,d) = if(n == 0, 0,(1/(-2*n))*bernfrac(2*n)*d^(2*n-1)*sum(k=1,d-1, kronecker(d, k)*subst(bernpol(2*n),x,k/d)*(1/(-2*n))))
    row(n) = {v=[]; for(k=2, 100, if(isfundamental(k), v=concat(v, denominator((2^(n*4)*n^2*z(n,k))/((2*n)!^2 * (k^(2*n-1))))))); v} \\ more accuracy here
    
  • Sage
    # Only suitable for small n and k
    def T(n, k):
        discs = [fundamental_discriminant(i) for i in range(1, 4*k+10)]
        D = sorted(list(set(discs)))[k+1]
        zetaK = QuadraticField(D).zeta_function(1000)
        val = (zetaK(2*n)*sqrt(D)/(pi^(4*n))).n(1000).nearby_rational(2^-900)
        return val.denominator() # Robin Visser, Mar 19 2024

Formula

T(n, k) = denominator( 2^(n*4) * n^2 * zeta_r(1 - 2*n) /((2*n)!^2 * A003658(k + 2)^(2*n - 1)) ), where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).
T(n, 0) = denominator((5^(-2*n)*(zeta(2*n, 1/5) - zeta(2*n, 2/5) - zeta(2*n, 3/5) + zeta(2*n, 4/5) ))*zeta(2*n)*sqrt(5)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according A080891.
T(n, 1) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000464(n+1) /((2*n)!^2 * 8^(2*n - 1)) ).
T(n, 2) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000191(n+1) /((2*n)!^2 * 12^(2*n - 1)) ).
T(n, 3) = denominator((13^(-2*n)*(zeta(2*n, 1/13) - zeta(2*n, 2/13) + zeta(2*n, 3/13) + zeta(2*n, 4/13) - zeta(2*n, 5/13) - zeta(2*n, 6/13) - zeta(2*n, 7/13) - zeta(2*n, 8/13) + zeta(2*n, 9/13) + zeta(2*n, 10/13) - zeta(2*n, 11/13) + zeta(2*n, 12/13) ))*zeta(2*n)*sqrt(13)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according the Dirichlet character X13(12,.).
T(n, 6) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000411(n+1) /((2*n)!^2 * 24^(2*n - 1)) ).
T(n, 7) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064072(n+1) /((2*n)!^2 * 28^(2*n - 1)) ).
T(n, 11) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064075(n+1) /((2*n)!^2 * 40^(2*n - 1)) ).
T(n, k) = denominator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * d(A003658(k+2)/4, n+1) /((2*n)!^2 * 40^(2*n - 1)) ), for all k where A003658(k+2) is a multiple of four (The discriminant of the quadratic field is from 4*A230375). d() are the generalized tangent numbers.
T(0, k) = 1, because for a real quadratic number field the discriminant D is positive, hence the Kronecker symbol (D/-1) = 1. This means the associated Dirichlet L-function will be zero at s = 0 inside the expression zeta_r(s) = zeta(s)*L(s, x).

A370412 Square array T(n, k) = numerator( zeta_r(2*n) * sqrt(A003658(k + 2)) / Pi^(4*n) ), read by antidiagonals, where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).

Original entry on oeis.org

0, 2, 0, 4, 1, 0, 536, 11, 1, 0, 2888, 361, 23, 2, 0, 3302008, 24611, 1681, 116, 4, 0, 12724582576, 2873041, 257543, 267704, 328, 4, 0, 18194938976, 27233033477, 67637281, 3741352, 92656, 88, 1, 0, 875222833138832, 11779156811, 18752521534133, 1156377368, 479214352, 287536, 29, 2, 0
Offset: 0

Views

Author

Thomas Scheuerle, Feb 22 2024

Keywords

Examples

			The array begins:
          0,           0,              0,               0,                 0
          2,           1,              1,               2,                 4
          4,          11,             23,             116,               328
        536,         361,           1681,          267704,             92656
       2888,       24611,         257543,         3741352,         479214352
    3302008,     2873041,       67637281,      1156377368,       14816172016
12724582576, 27233033477, 18752521534133, 753075777246704, 16476431095568992
		

Crossrefs

Cf. A370411 (denominators).
Cf. A002432 (denominators zeta(2*n)/Pi^(2*n)).
Cf. A046988 (numerators zeta(2*n)/Pi^(2*n)).
Coefficients of Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • PARI
    \p 700
    row(n) = {v=[]; for(k=2, 50, if(isfundamental(k), v=concat(v, numerator(bestappr(sqrt(k)*lfun(x^2-(k%2)*x-floor(k/4), 2*n)/Pi^(4*n)))))); v}
    z(n,d) = if(n == 0, 0,(1/(-2*n))*bernfrac(2*n)*d^(2*n-1)*sum(k=1,d-1, kronecker(d, k)*subst(bernpol(2*n),x,k/d)*(1/(-2*n))))
    row(n) = {v=[]; for(k=2, 100, if(isfundamental(k), v=concat(v, numerator((2^(n*4)*n^2*z(n,k))/((2*n)!^2 * (k^(2*n-1))))))); v} \\ more accuracy here
    
  • Sage
    # Only suitable for small n and k
    def T(n, k):
        discs = [fundamental_discriminant(i) for i in range(1, 4*k+10)]
        D = sorted(list(set(discs)))[k+1]
        zetaK = QuadraticField(D).zeta_function(1000)
        val = (zetaK(2*n)*sqrt(D)/(pi^(4*n))).n(1000).nearby_rational(2^-900)
        return val.numerator() # Robin Visser, Mar 19 2024

Formula

T(n, k) = numerator( 2^(n*4) * n^2 * zeta_r(1 - 2*n) /((2*n)!^2 * A003658(k + 2)^(2*n - 1)) ), where zeta_r is the Dedekind zeta-function over r and r is the real quadratic field with discriminant A003658(k + 2).
T(n, 0) = numerator((5^(-2*n)*(zeta(2*n, 1/5) - zeta(2*n, 2/5) - zeta(2*n, 3/5) + zeta(2*n, 4/5) ))*zeta(2*n)*sqrt(5)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according A080891.
T(n, 1) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000464(n+1) /((2*n)!^2 * 8^(2*n - 1)) ).
T(n, 2) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000191(n+1) /((2*n)!^2 * 12^(2*n - 1)) ).
T(n, 3) = numerator((13^(-2*n)*(zeta(2*n, 1/13) - zeta(2*n, 2/13) + zeta(2*n, 3/13) + zeta(2*n, 4/13) - zeta(2*n, 5/13) - zeta(2*n, 6/13) - zeta(2*n, 7/13) - zeta(2*n, 8/13) + zeta(2*n, 9/13) + zeta(2*n, 10/13) - zeta(2*n, 11/13) + zeta(2*n, 12/13) ))*zeta(2*n)*sqrt(13)*Pi^(-4*n)). A sum of Hurwitz zeta functions with signs according the Dirichlet character X13(12,.).
T(n, 6) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A000411(n+1) /((2*n)!^2 * 24^(2*n - 1)) ).
T(n, 7) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064072(n+1) /((2*n)!^2 * 28^(2*n - 1)) ).
T(n, 11) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * A064075(n+1) /((2*n)!^2 * 40^(2*n - 1)) ).
T(n, k) = numerator( 2^(n*4) * n^2 * zeta(1 - 2*n) * (-1)^n * d(A003658(k+2)/4, n+1) /((2*n)!^2 * 40^(2*n - 1)) ), for all k where A003658(k+2) is a multiple of four (The discriminant of the quadratic field is from 4*A230375). d() are the generalized tangent numbers.
T(0, k) = 0, because for a real quadratic number field the discriminant D is positive, hence the Kronecker symbol (D/-1) = 1. This means the associated Dirichlet L-function will be zero at s = 0 inside the expression zeta_r(s) = zeta(s)*L(s, x).

A327785 Square array read by antidiagonals: A(n,k) = Sum_{d|n} (k/d), (n>=1, k>=0), where (m/n) is the Kronecker symbol.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 0, 3, 1, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 0, 4, 1, 1, 1, 0, 1, 0, 0, 2, 1, 1, 2, 1, 1, 2, 0, 2, 4, 1, 1, 1, 2, 1, 1, 2, 0, 1, 3, 1, 1, 2, 0, 3, 2, 0, 2, 0, 1, 4, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 3, 0, 4, 0, 0, 3, 0, 0, 6, 1
Offset: 1

Views

Author

Seiichi Manyama, Sep 25 2019

Keywords

Examples

			Square array begins:
   1, 1, 1, 1, 1, 1, 1, 1, ...
   1, 2, 1, 0, 1, 0, 1, 2, ...
   1, 2, 0, 1, 2, 0, 1, 2, ...
   1, 3, 1, 1, 1, 1, 1, 3, ...
   1, 2, 0, 0, 2, 1, 2, 0, ...
   1, 4, 0, 0, 2, 0, 1, 4, ...
   1, 2, 2, 0, 2, 0, 0, 1, ...
   1, 4, 1, 0, 1, 0, 1, 4, ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Sum[KroneckerSymbol[k, d], {d, Divisors[n]}];
    Table[A[n - k, k], {n, 1, 13}, {k, n - 1, 0, -1}] // Flatten (* Jean-François Alcover, Sep 25 2019 *)
Previous Showing 21-30 of 30 results.