A051366
Number of 6-element families of an n-element set such that every 4 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 112, 39761, 5318420, 506289623, 41378309308, 3133123494417, 227657567966500, 16152548751321851, 1129224692910819164, 78169242144478858373, 5373159786842137703140, 367368738925063893430959
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
Table[1/6! (64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
A051367
Number of 5-element families of an n-element set such that every 4 members of the family have a nonempty intersection.
Original entry on oeis.org
0, 0, 0, 0, 224, 21281, 1144027, 49310674, 1915317642, 70460566827, 2513684751809, 88008877380908, 3043421159408080, 104321464544910613, 3552122530256316471, 120307381384305672102
Offset: 0
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
[(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24)/120: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(1/5!)*(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((1/5!)*(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), ", ")) \\ G. C. Greubel, Oct 08 2017
A051375
Number of Boolean functions of n variables and rank 3 from Post class F(5,inf).
Original entry on oeis.org
0, 0, 9, 66, 345, 1590, 6909, 29106, 120465, 493230, 2005509, 8116746, 32744985, 131801670, 529647309, 2125861986, 8525167905, 34165634910, 136857036309, 548010848826, 2193789933225, 8780396200950, 35137287916509
Offset: 1
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
-
[(4^n - 3^n - 3*2^n + 5)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(4^n - 3^n - 3*2^n + 5)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1((4^n - 3^n - 3*2^n + 5)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
A051376
Number of Boolean functions of n variables and rank 4 from Post class F(5,inf).
Original entry on oeis.org
0, 0, 3, 134, 1935, 20830, 198303, 1776894, 15402495, 130890110, 1098087903, 9130126654, 75412301055, 619706950590, 5071742430303, 41369422556414, 336511166127615, 2730929153686270, 22119108433729503, 178853777028618174
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (25,-241,1135,-2734,3160,-1344).
-
[(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6: n in [1..50]]; // G. C. Greubel, Oct 08 2017
-
Table[(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=1,50, print1((8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
A051381
Number of Boolean functions of n variables from Post class F(5,inf).
Original entry on oeis.org
1, 3, 19, 471, 162631, 12884412819, 64563604212887416603, 1361129467683753853595244012815395920687, 521064401567922879406069432539095585333589848390805645835993148352662477920015
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..12
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, (English translation), Discrete Mathematics and Applications, 9, (1999), no. 6.
- S. Spasovski and A. M. Bogdanova, Optimization of the Polynomial Greedy Solution for the Set Covering Problem, 2013, 10th Conference for Informatics and Information Technology (CIIT 2013).
- Index entries for sequences related to Boolean functions
-
Table[Sum[(-1)^(j + 1)*Binomial[n, j]*2^(2^(n - j) - 1) , {j, 1, n}], {n, 1, 5}] (* G. C. Greubel, Oct 08 2017 *)
A059090
Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 15, 30, 30, 5, 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1, 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7
Offset: 0
1;
1, 1;
1, 3;
1, 7, 3, 1;
1, 15, 30, 30, 5;
1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1;
1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7;
- Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
- Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.
A374453
Number of set-systems S composed of nonempty subsets of [n] such that any element k in S appears at most k times.
Original entry on oeis.org
1, 2, 6, 36, 547, 26672, 5120069, 4581266029, 21912279450653, 627026135401140277, 118043015040470215561725, 158758107128989643461422723149, 1641097327889006717487651007699748392
Offset: 0
In the set-system: {{2, 3, 5},{3, 4, 5},{1, 3},{2}} no element k appears more than k times, so it is counted under a(5) = 26672.
a(n) for n = 0..2 counts the following set-systems:
a(0) = 1: {}.
a(1) = 2: {}, {{1}}.
a(2) = 6: {}, {{1}}, {{2}}, {{1},{2}}, {{1,2}}, {{1,2},{2}}.
A051368
Number of Boolean functions of n variables and rank 8 from the Post class F(5,2).
Original entry on oeis.org
0, 0, 0, 12, 105765, 59046810, 16636450912, 3491313542424, 627725748292995, 102894277877828670, 15867914519581210614, 2343602605748557069356, 335205287948366997151705, 46782266953279485879549090
Offset: 1
- E. Post, Two-valued iterative systems, Annals of Mathematics, no 5, Princeton University Press, NY, 1941.
- V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
A308700
a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).
Original entry on oeis.org
0, 0, 2, 18, 112, 600, 2976, 14112, 65024, 293760, 1308160, 5761536, 25153536, 109025280, 469704704, 2013143040, 8589672448, 36506664960, 154617643008, 652832538624, 2748773826560, 11544861081600, 48378488553472, 202310091276288, 844424829468672, 3518436999168000
Offset: 0
For n = 3, the set X = {1,2,3},
the power set 2^X = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X} and the pseudo-graph P represented by 2^X has the following edges, here grouped into...
simple loops:
{1} --- {1}, {2} --- {2}, {3} --- {3} for a total of 3.
double loops:
{1,2} --- {1,2}, {1,3} --- {1,3}, {2,3} --- {2,3} for a total of 6 simple loops.
triple loop:
X --- X for a total of 3 simple loops.
simple edges:
{1} --- {1,2}, {1} --- {1,3}, {1} --- X, {2} --- {1,2}, {2} --- {2,3}, {2} --- X, {3} --- {1,3}, {3} --- {2,3}, {3} --- X, {1,2} --- {1,3}, {1,2} --- {2,3}, {1,3} --- {2,3} for a total of 12.
double edges:
{1,2} --- X, {1,3} --- X, {2,3} --- X for a total of 6 simple edges.
By deleting the loops in P, there remain a total of a(3) = 12 + 6 = 18 edges for the topological graph arising from P.
- A. M. Kozae, A. A. El Atik, A. Elrokh and M. Atef, New types of graphs induced by topological spaces, Journal of Intelligent & Fuzzy Systems, vol. 36, no. 6 (2019), pp. 5125-5134; on Research Gate.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
Cf.
A082134 (total number of edges of the pseudo-graph P).
-
Flat(List([0..25], n->n*2^(n-2)*(2^(n-1)-1)))
-
[n*2^(n-2)*(2^(n-1)-1): n in [0..25]];
-
a:=n->n*2^(n-2)*(2^(n-1)-1): seq(a(n),n=0..25);
-
Table[n 2^(n - 2)(2^(n - 1) - 1), {n, 0, 31}]
-
makelist(n*2^(n-2)*(2^(n-1)-1), n, 0, 25);
-
a(n)=n*2^(n-2)*(2^(n-1)-1);
A344494
Triangle read by rows: The d-th row contains the Betti numbers of the d-dimensional resonance arrangement.
Original entry on oeis.org
1, 3, 2, 7, 15, 9, 15, 80, 170, 104, 31, 375, 2130, 5270, 3485, 63, 1652, 22435, 159460, 510524, 371909, 127, 7035, 215439, 3831835, 37769977, 169824305, 135677633, 255, 29360, 1957200, 81029004, 2076831708, 30623870732, 207507589302, 178881449368, 511, 120975, 17153460, 1582492380, 96834110730, 3829831100340, 89702833260450, 973784079284874, 887815808473419
Offset: 1
Triangle begins
1;
3, 2;
7, 15, 9;
15, 80, 170, 104;
31, 375, 2130, 5270, 3485;
- T. Brysiewicz, H. Eble, and L. Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021 (provides the Betti numbers for the d-dimensional resonance arrangement for 1<=d<=9).
- Z. Chroman and M. Singhal, Computations associated with the resonance arrangemnt, arXiv:2106.09940 [math.CO], 2021 (provides a formula for the fourth Betti number of this arrangement and the Betti numbers for the d-dimensional resonance arrangement for 1<=d<=9).
- H. Kamiya, A. Takemura, and H. Terao, Ranking patterns of unfolding models of codimension one, Advances in Applied Mathematics 47 (2011) 379 - 400 (provides the Betti numbers for the d-dimensional resonance arrangement for 1<=d<=7).
- Lukas Kühne, The Universality of the Resonance Arrangement and its Betti Numbers, arXiv:2008.10553 [math.CO], 2020 (provides formula for the second and third Betti number of this arrangement).
A034997 is the sum of each row (Number of generalized retarded functions in quantum field theory).
A000225 is the first column (2^d - 1).
A036239 is the second column (1/2) * (4^n - 3^n - 2^n + 1).
Comments