cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A051366 Number of 6-element families of an n-element set such that every 4 members of the family have a nonempty intersection.

Original entry on oeis.org

0, 0, 0, 0, 112, 39761, 5318420, 506289623, 41378309308, 3133123494417, 227657567966500, 16152548751321851, 1129224692910819164, 78169242144478858373, 5373159786842137703140, 367368738925063893430959
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Programs

  • Mathematica
    Table[1/6! (64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = (1/6!)*(64^n - 15*60^n + 60*58^n + 25*57^n - 240*56^n + 45*55^n + 705*54^n - 987*53^n - 351*52^n + 3040*51^n - 5445*50^n + 6105*49^n - 4939*48^n + 2997*47^n - 1365*46^n + 455*45^n - 105*44^n + 15*43^n - 42^n - 15*32^n + 75*30^n - 150*29^n + 150*28^n - 75*27^n + 15*26^n + 85*16^n - 85*15^n - 225*8^n + 225*7^n + 274*4^n - 274*3^n - 120*2^n + 120).

A051367 Number of 5-element families of an n-element set such that every 4 members of the family have a nonempty intersection.

Original entry on oeis.org

0, 0, 0, 0, 224, 21281, 1144027, 49310674, 1915317642, 70460566827, 2513684751809, 88008877380908, 3043421159408080, 104321464544910613, 3552122530256316471, 120307381384305672102
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Programs

  • Magma
    [(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24)/120: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(1/5!)*(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((1/5!)*(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24), ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = (1/5!)*(32^n - 5*30^n + 10*29^n - 10*28^n + 5*27^n - 26^n - 10*16^n + 10*15^n + 35*8^n - 35*7^n - 50*4^n + 50*3^n + 24*2^n - 24).

A051375 Number of Boolean functions of n variables and rank 3 from Post class F(5,inf).

Original entry on oeis.org

0, 0, 9, 66, 345, 1590, 6909, 29106, 120465, 493230, 2005509, 8116746, 32744985, 131801670, 529647309, 2125861986, 8525167905, 34165634910, 136857036309, 548010848826, 2193789933225, 8780396200950, 35137287916509
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Crossrefs

Cf. A036240.

Programs

  • Magma
    [(4^n - 3^n - 3*2^n + 5)/2: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(4^n - 3^n - 3*2^n + 5)/2, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1((4^n - 3^n - 3*2^n + 5)/2, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = A036239(n) - A000918(n).
a(n) = (4^n - 3^n - 3*2^n + 5)/2.
a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*C(2^(n-j)-1, k-1) (with k=3).
Also: 1/(k-1)!*Sum(s(k, j)*(2^((j-1)*n)-(2^(j-1)-1)^n), j=1..k), where s(k, j) are Stirling numbers of the first kind (with k=3).
From Colin Barker, Jun 25 2012: (Start)
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4).
G.f.: 3*x^3*(3-8*x)/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). (End)

Extensions

More terms from James Sellers

A051376 Number of Boolean functions of n variables and rank 4 from Post class F(5,inf).

Original entry on oeis.org

0, 0, 3, 134, 1935, 20830, 198303, 1776894, 15402495, 130890110, 1098087903, 9130126654, 75412301055, 619706950590, 5071742430303, 41369422556414, 336511166127615, 2730929153686270, 22119108433729503, 178853777028618174
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Crossrefs

Programs

  • Magma
    [(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6: n in [1..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[(8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=1,50, print1((8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = A036240(n) - A036239(n) + A000918(n).
a(n) = (8^n - 7^n - 6*4^n + 6*3^n + 11*2^n - 17)/6.
a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*C(2^(n-j)-1, k-1), where k=4.
Also: 1/(k-1)!*Sum_{j=1..k} s(k, j)*(2^((j-1)*n)-(2^(j-1)-1)^n), where s(k, j) are Stirling numbers of the first kind (and k=4).
G.f.: x^3*(3 + 59*x - 692*x^2 + 1344*x^3) / ( (x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(8*x-1)*(7*x-1) ). - R. J. Mathar, Jun 13 2013

Extensions

More terms from James Sellers

A051381 Number of Boolean functions of n variables from Post class F(5,inf).

Original entry on oeis.org

1, 3, 19, 471, 162631, 12884412819, 64563604212887416603, 1361129467683753853595244012815395920687, 521064401567922879406069432539095585333589848390805645835993148352662477920015
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

Crossrefs

Cf. A036239, A036240. Equals A005530(n)/2.

Programs

  • Mathematica
    Table[Sum[(-1)^(j + 1)*Binomial[n, j]*2^(2^(n - j) - 1) , {j, 1, n}], {n, 1, 5}] (* G. C. Greubel, Oct 08 2017 *)

Formula

a(n) = Sum_{j=1..n} (-1)^(j+1)*C(n, j)*2^(2^(n-j)-1).

Extensions

More terms from James Sellers

A059090 Triangle T(n,m) giving number of m-element intersecting antichains on a labeled n-set or n-variable Boolean functions with m nonzero values in the Post class F(7,2), m=0,.., A037952(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 15, 30, 30, 5, 1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1, 1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Dec 28 2000

Keywords

Comments

An antichain is called intersecting (or proper) antichain if every two members have a nonempty intersection. Row sums give the number of intersecting antichains on a labeled n-set or n-variable Boolean functions in the Post class F(7,2) or self-dual monotone Boolean functions of n+1 variables. Cf. A001206.

Examples

			1;
1, 1;
1, 3;
1, 7, 3, 1;
1, 15, 30, 30, 5;
1, 31, 195, 605, 780, 543, 300, 135, 45, 10, 1;
1, 63, 1050, 9030, 41545, 118629, 233821, 329205, 327915, 224280, 100716, 29337, 5950, 910, 105, 7;
		

References

  • Jovovic V., Kilibarda G., The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
  • Pogosyan G., Miyakawa M., Nozaki A., Rosenberg I., The Number of Clique Boolean Functions, IEICE Trans. Fundamentals, Vol. E80-A, No. 8, pp. 1502-1507, 1997/8.

Crossrefs

Formula

T(n, 0)=1, T(n, 1)=2^n-1, T(n, 2)=A032263(n), T(n, 3)=A051303(n), T(n, 4)=A051304(n), T(n, 5)=A051305(n), T(n, 6)=A051306(n), T(n, 7)=A051307(n).

A374453 Number of set-systems S composed of nonempty subsets of [n] such that any element k in S appears at most k times.

Original entry on oeis.org

1, 2, 6, 36, 547, 26672, 5120069, 4581266029, 21912279450653, 627026135401140277, 118043015040470215561725, 158758107128989643461422723149, 1641097327889006717487651007699748392
Offset: 0

Views

Author

John Tyler Rascoe, Jul 08 2024

Keywords

Examples

			In the set-system: {{2, 3, 5},{3, 4, 5},{1, 3},{2}} no element k appears more than k times, so it is counted under a(5) = 26672.
a(n) for n = 0..2 counts the following set-systems:
a(0) = 1: {}.
a(1) = 2: {}, {{1}}.
a(2) = 6: {}, {{1}}, {{2}}, {{1},{2}}, {{1,2}}, {{1,2},{2}}.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(7)-a(8) from Alois P. Heinz, Jul 09 2024
a(9) from Alois P. Heinz, Jul 15 2024
a(10)-a(12) from Christian Sievers, Jul 17 2024

A051368 Number of Boolean functions of n variables and rank 8 from the Post class F(5,2).

Original entry on oeis.org

0, 0, 0, 12, 105765, 59046810, 16636450912, 3491313542424, 627725748292995, 102894277877828670, 15867914519581210614, 2343602605748557069356, 335205287948366997151705, 46782266953279485879549090
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda

Keywords

References

  • E. Post, Two-valued iterative systems, Annals of Mathematics, no 5, Princeton University Press, NY, 1941.
  • V. Jovovic, G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).

Formula

A308700 a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).

Original entry on oeis.org

0, 0, 2, 18, 112, 600, 2976, 14112, 65024, 293760, 1308160, 5761536, 25153536, 109025280, 469704704, 2013143040, 8589672448, 36506664960, 154617643008, 652832538624, 2748773826560, 11544861081600, 48378488553472, 202310091276288, 844424829468672, 3518436999168000
Offset: 0

Views

Author

Stefano Spezia, Jun 17 2019

Keywords

Comments

Given a pseudo-graph P of the set X = {1, 2, ..., n}, defined as a graph represented by the discrete topology on the set X (the power set of X), for n > 0, a(n) is the number of edges of the topological graph arising by deleting loops in P (see Theorem 3.3 in Kozae et al.).

Examples

			For n = 3, the set X = {1,2,3},
  the power set 2^X = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, X} and the pseudo-graph P represented by 2^X has the following edges, here grouped into...
  simple loops:
  {1} --- {1}, {2} --- {2}, {3} --- {3} for a total of 3.
  double loops:
  {1,2} --- {1,2}, {1,3} --- {1,3}, {2,3} --- {2,3} for a total of 6 simple loops.
  triple loop:
  X --- X for a total of 3 simple loops.
  simple edges:
  {1} --- {1,2}, {1} --- {1,3}, {1} --- X, {2} --- {1,2}, {2} --- {2,3}, {2} --- X, {3} --- {1,3}, {3} --- {2,3}, {3} --- X, {1,2} --- {1,3}, {1,2} --- {2,3}, {1,3} --- {2,3} for a total of 12.
  double edges:
  {1,2} --- X, {1,3} --- X, {2,3} --- X for a total of 6 simple edges.
  By deleting the loops in P, there remain a total of a(3) = 12 + 6 = 18 edges for the topological graph arising from P.
		

Crossrefs

Cf. A082134 (total number of edges of the pseudo-graph P).

Programs

  • GAP
    Flat(List([0..25], n->n*2^(n-2)*(2^(n-1)-1)))
    
  • Magma
    [n*2^(n-2)*(2^(n-1)-1): n in [0..25]];
    
  • Maple
    a:=n->n*2^(n-2)*(2^(n-1)-1): seq(a(n),n=0..25);
  • Mathematica
    Table[n 2^(n - 2)(2^(n - 1) - 1), {n, 0, 31}]
  • Maxima
    makelist(n*2^(n-2)*(2^(n-1)-1), n, 0, 25);
    
  • PARI
    a(n)=n*2^(n-2)*(2^(n-1)-1);

Formula

O.g.f.: -2 * x^2 * (-1 + 3*x)/((-1 + 2*x)^2 * (-1 + 4*x)^2).
E.g.f.: (1/2) * exp(2*x) * (-1 + exp(2*x)) * x.
a(n) = 12 * a(n - 1) - 52*a(n - 2) + 96*a(n - 3) - 64*a(n - 4) for n > 3.
a(n) = n * 2^(n - 2) * (2^(n - 1) - 1).
Lim_{n -> infinity} a(n)/a(n - 1) = 4.
a(n) = A082134(n) - A001787(n).
a(n) = A005843(A001787(n)) * A000225(n - 1).
a(n) = n * A006516(n - 1).
a(n) = n * A171476(n - 2).
a(n) = n * A171496(n - 3).

A344494 Triangle read by rows: The d-th row contains the Betti numbers of the d-dimensional resonance arrangement.

Original entry on oeis.org

1, 3, 2, 7, 15, 9, 15, 80, 170, 104, 31, 375, 2130, 5270, 3485, 63, 1652, 22435, 159460, 510524, 371909, 127, 7035, 215439, 3831835, 37769977, 169824305, 135677633, 255, 29360, 1957200, 81029004, 2076831708, 30623870732, 207507589302, 178881449368, 511, 120975, 17153460, 1582492380, 96834110730, 3829831100340, 89702833260450, 973784079284874, 887815808473419
Offset: 1

Views

Author

Lukas Kühne, May 21 2021

Keywords

Comments

a(d,i) is the i-th Betti number of the d-dimensional resonance arrangement (for 1 <= i <= d).
The d-dimensional resonance arrangement is the hyperplane arrangement in the d-dimensional space (x_1,...,x_d) consisting of (2^d - 1) hyperplanes c_1*x_1 + c_2*x_2 + ... + c_d*x_d = 0 where c_j are 0 or +1 and we exclude the case with all c=0. This arrangement is also called the all-subset arrangement.
The Betti numbers are also called Whitney numbers of the second kind and they are also the absolute values of the coefficients of the characteristic polynomial of the arrangement.
The sum of the Betti numbers equals the number of chambers of this arrangement.
The Betti numbers for the 8- and 9-dimensional resonance arrangement were computed with the julia package CountingChambers.jl.

Examples

			Triangle begins
   1;
   3,   2;
   7,  15,    9;
  15,  80,  170,  104;
  31, 375, 2130, 5270, 3485;
		

Crossrefs

A034997 is the sum of each row (Number of generalized retarded functions in quantum field theory).
A000225 is the first column (2^d - 1).
A036239 is the second column (1/2) * (4^n - 3^n - 2^n + 1).
Previous Showing 21-30 of 30 results.