A191649
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (1,1), (2,2).
Original entry on oeis.org
1, 3, 14, 71, 379, 2082, 11651, 66051, 378064, 2180037, 12644861, 73695358, 431209313, 2531556197, 14904832196, 87970766447, 520337606401, 3083584244460, 18304476242735, 108820740004749, 647817646760368, 3861215365595659, 23039691494489015, 137615812845579390
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(x^4+2*x^3-x^2-6*x+1) )); // G. C. Greubel, Apr 29 2019
-
CoefficientList[Series[1/Sqrt[x^4 + 2 x^3 - x^2 - 6 x + 1], {x, 0, 23}], x] (* Michael De Vlieger, Oct 08 2016 *)
-
/* same as in A092566 but use */
steps=[[0,1], [1,0], [1,1], [2,2]];
/* Joerg Arndt, Jun 30 2011 */
-
my(x='x+O('x^30)); Vec(1/sqrt(x^4+2*x^3-x^2-6*x+1)) \\ G. C. Greubel, Apr 29 2019
-
(1/sqrt(x^4+2*x^3-x^2-6*x+1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 29 2019
A192371
Number of lattice paths from (0,0) to (n,n) using steps (1,1), (0,2), (2,0), (0,3), (3,0).
Original entry on oeis.org
1, 1, 3, 9, 25, 87, 307, 1113, 4149, 15605, 59201, 225999, 866449, 3333847, 12865335, 49769689, 192945411, 749396493, 2915432049, 11358771965, 44313108627, 173081422997, 676766482917, 2648843996031, 10376891445525, 40685535827325, 159641884780749, 626849029013919, 2463010645910537, 9683604464279235
Offset: 0
-
s := RootOf( (s^3-s-1)*(s-1)+x*s*(4-3*s), s);
ogf := sqrt(4*s-3*s^2)*(s^3-4*s^2+2*s+2)/((2*s^2-s-2)*(3*s^3-6*s^2+4*s-2)*(1-x)):
series(ogf, x=0, 30); # Mark van Hoeij, Apr 17 2013
# second Maple program:
b:= proc(p) b(p):= `if`(p=[0$2], 1, `if`(min(p[])<0, 0,
add(b(p-l), l=[[1, 1], [0, 2], [2, 0], [0, 3], [3, 0]])))
end:
a:= n-> b([n$2]):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 18 2014
-
b[p_List] := b[p] = If[p == {0, 0}, 1, If[Min[p] < 0, 0, Sum[b[p - l], {l, {{1, 1}, {0, 2}, {2, 0}, {3, 0}, {0, 3}}}]]]; a[n_] := b[{n, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
-
/* same as in A092566 but use */
steps=[[1,1], [2,0], [0,2], [3,0], [0,3]];
/* Joerg Arndt, Jun 30 2011 */
A192417
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (2,2), (3,3).
Original entry on oeis.org
1, 2, 7, 27, 107, 436, 1810, 7609, 32288, 138009, 593311, 2562725, 11112720, 48347332, 210936119, 922550622, 4043488129, 17755735241, 78099099877, 344033901804, 1517535718392, 6701979806379, 29630948706756, 131136723532257, 580901892464599, 2575423975663301
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1) )); // G. C. Greubel, Apr 29 2019
-
CoefficientList[Series[1/Sqrt[x^6+2x^5+x^4-2x^3-2x^2-4x+1], {x, 0, 25}], x] (* Michael De Vlieger, Oct 08 2016 *)
-
/* same as in A092566 but use */
steps=[[0,1], [1,0], [2,2], [3,3]];
/* Joerg Arndt, Jun 30 2011 */
-
my(x='x+O('x^30)); Vec(1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)) \\ G. C. Greubel, Apr 29 2019
-
(1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 29 2019
A192446
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (3,0), (0,1), (0,3).
Original entry on oeis.org
1, 2, 6, 30, 154, 768, 3906, 20232, 105750, 556328, 2943432, 15646932, 83500126, 447057380, 2400249624, 12918250836, 69674241654, 376489511460, 2037768450480, 11045915485740, 59955446568276, 325821729044784, 1772588671356204, 9653187691115640, 52617711157401186, 287051310425050668
Offset: 0
-
REL := 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1);
ogf := sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3);
series(eval(ogf, s=RootOf(REL,s)),x=0,30); # Mark van Hoeij, Apr 17 2013
# second Maple program:
b:= proc(x, y) option remember; `if`(y=0, 1, add((p->
`if`(p[1]<0, 0, b(p[1], p[2])))(sort([x, y]-h)),
h=[[1, 0], [0, 1], [3, 0], [0, 3]]))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 28 2018
-
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-3] + a[n-1, k] + a[n-3, k]; a[, ] = 0;
a[n_] := a[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Oct 06 2019 *)
-
/* same as in A092566 but use */
steps=[[1,0], [3,0], [0,1], [0,3]];
/* Joerg Arndt, Jun 30 2011 */
-
seq(N) = {
my(x='x + O('x^N), d=16*x^6 + 16*x^5 + 16*x^4 - 8*x^3 - 4*x^2 + 1,
s=serreverse((1 - 2*x^2 + 2*x^3 - sqrt(d))/(6*x^2)));
Vec(sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3));
};
seq(26) \\ Gheorghe Coserea, Aug 06 2018
A261507
Fibonacci-numbered rows of Pascal's triangle. Triangle read by rows: T(n,k)= binomial(Fibonacci(n), k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 10, 10, 5, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, 293930, 352716, 352716, 293930, 203490, 116280, 54264, 20349, 5985, 1330, 210, 21, 1
Offset: 0
1,
1, 1,
1, 1,
1, 2, 1,
1, 3, 3, 1,
1, 5, 10, 10, 5, 1,
1, 8, 28, 56, 70, 56, 28, 8, 1,
1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1
-
Table[Binomial[Fibonacci[n], k], {n, 0, 8}, {k, 0, Fibonacci[n]}]//Flatten (* Jean-François Alcover, Nov 12 2015*)
-
v = vector(101,j,fibonacci(j)); i=0; n=0; while(n<100, for(k=0, n, print1(binomial(n, k), ", ","")); print(); i=i+1; n=v[i] ;)
A383474
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(2,0),(3,0),(0,1),(0,2),(0,3).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 4, 5, 5, 4, 7, 12, 14, 12, 7, 13, 26, 37, 37, 26, 13, 24, 56, 89, 106, 89, 56, 24, 44, 118, 209, 277, 277, 209, 118, 44, 81, 244, 477, 698, 784, 698, 477, 244, 81, 149, 499, 1063, 1700, 2113, 2113, 1700, 1063, 499, 149, 274, 1010, 2329, 4026, 5469, 6040, 5469, 4026, 2329, 1010, 274
Offset: 0
Square array A(n,k) begins:
1, 1, 2, 4, 7, 13, 24, ...
1, 2, 5, 12, 26, 56, 118, ...
2, 5, 14, 37, 89, 209, 477, ...
4, 12, 37, 106, 277, 698, 1700, ...
7, 26, 89, 277, 784, 2113, 5469, ...
13, 56, 209, 698, 2113, 6040, 16497, ...
24, 118, 477, 1700, 5469, 16497, 47332, ...
-
a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^2-y^2-x^3-y^3), n), k);
A191678
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (0,2), (2,2).
Original entry on oeis.org
1, 1, 5, 15, 62, 233, 937, 3729, 15121, 61492, 251942, 1036215, 4279754, 17731181, 73670725, 306823695, 1280574706, 5354602495, 22426876445, 94070238840, 395106054632, 1661489413472, 6994494531010, 29474635716345, 124319047552309, 524797934104312, 2217091297558466, 9373180869094923
Offset: 0
-
P := (4*x^6+12*x^5-20*x^3+27*x^2+12*x-4)*A^3-(3*x^2+3*x-3)*A+1;
Q := eval(P, A=A+1):
series(RootOf(Q,A)+1, x=0, 30); # Mark van Hoeij, Apr 17 2013
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [0,2], [2,2]];
/* Joerg Arndt, Jun 30 2011 */
Comments