cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A280187 Numbers n such that 2 * (1^n + 2^n + 3^n + ... + n^n) is not 0 (mod n), but 2 * (1^d + 2^d + 3^d + ... + d^d) is 0 (mod d) for each other d | n.

Original entry on oeis.org

6, 20, 110, 272, 506, 812, 2162, 2756, 3422, 4970, 6806, 7832, 11342, 12656, 17030, 18632, 22052, 27722, 29756, 31862, 36290, 38612, 51302, 54056, 56882, 62750, 65792, 68906, 72092, 85556, 96410, 100172, 120062, 124256, 128522
Offset: 1

Views

Author

Keywords

Crossrefs

Primitive elements of A228870.
Subsequence of A002943. Also a subsequence of A028689, A036689, A053198, A068377, A079143, A128672, A220211 and other sequences ...- Paolo P. Lava, Jan 10 2017

Programs

  • PARI
    has(n)=my(f=factor(n)[,1]); for(i=1,#f, if(n%(f[i]-1)==0 && f[i]>2, return(1))); 0
    is(n)=if(n%2, return(0)); if(n%3==0, return(n==6)); if(n%20==0, return(n==20)); if(!has(n), return(0)); my(f=factor(n)[,1]); for(i=1,#f, if(has(n/f[i]), return(0))); 1 \\ Charles R Greathouse IV, Dec 28 2016

A341109 a(n) = denominator(p(n, x)) / (n!*denominator(bernoulli(n, x))), where p(n, x) = Sum_{k=0..n} E2(n, k)*binomial(x + k, 2*n) / Product_{j=1..n} (j - x) and E2(n, k) are the second-order Eulerian numbers A201637.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 96, 192, 1152, 768, 1536, 3072, 18432, 36864, 221184, 147456, 884736, 1769472, 10616832, 21233664, 637009920, 424673280, 2548039680, 5096079360, 152882380800, 61152952320, 366917713920, 81537269760, 163074539520, 326149079040, 1956894474240
Offset: 0

Views

Author

Peter Luschny, Feb 06 2021

Keywords

Comments

The challenge is to characterize the sequence purely arithmetically, i.e., without reference to the Eulerian numbers or the Bernoulli polynomials.

Crossrefs

Programs

  • Maple
    Epoly := proc(n, x) add(combinat:-eulerian2(n, k)*binomial(x+k, 2*n), k = 0..n) / mul(j-x, j = 1..n): simplify(expand(%)) end:
    seq(denom(Epoly(n, x)) / (n!*denom(bernoulli(n, x))), n = 0..30);
  • Mathematica
    A053657[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k,0,n}],{p, Prime[Range[n]]}];
    A144845[n_] := Denominator[Together[BernoulliB[n, x]]];
    A163176[n_] := A053657[n] / n!;
    Table[(n + 1) A163176[n + 1] / A144845[n], {n, 0, 30}]
  • Sage
    def A341109(n): # uses[A341108, A318256]
        return A341108(n)//A318256(n)
    print([A341109(n) for n in (0..30)])

Formula

a(n) = A053657(n+1)/(n!*A144845(n)).
a(n) = (n+1)*A163176(n+1)/A144845(n).
a(n) = A341108(n)/A318256(n).
a(n) = A341107(n)*A324369(n+1).
a(n) = A341108(n)/A324370(n+1).
a(n) = A341108(n)*A007947(n+1)/A144845(n).
a(n) = A341108(n)*A324369(n+1)/A195441(n).
prime(n) divides a(k) for k >= A036689(n).
2^(n-1) divides exactly a(n) for n >= 2.

A072006 Number of terms in InversePhi set of prime(n)*(prime(n)-1) = phi(p(n)^2), where prime(n) is the n-th prime and phi=A000010.

Original entry on oeis.org

3, 4, 5, 4, 2, 7, 5, 2, 2, 2, 2, 6, 10, 2, 2, 2, 2, 7, 4, 2, 16, 4, 2, 8, 19, 5, 2, 2, 2, 13, 2, 2, 2, 4, 5, 4, 2, 4, 2, 5, 2, 14, 2, 21, 2, 2, 2, 2, 2, 5, 5, 2, 28, 2, 2, 2, 2, 2, 8, 8, 2, 2, 2, 2, 4, 5, 2, 14, 2, 7, 5, 2, 2, 5, 4, 2, 2, 11, 7, 17, 2, 11, 2, 26, 2, 2, 12, 4, 5, 2, 2, 2, 2, 2, 2, 2, 5, 5
Offset: 1

Views

Author

Labos Elemer, Jun 04 2002

Keywords

Comments

p^2 and 2p^2 are always in inverse set, so a(n) >= 2.

Examples

			For n = 5: prime(5) = 11, a(5) = 2 because InvPhi(110) = {121, 242}.
For n = 6: prime(6) = 13, a(6) = 7 because InvPhi(13*12) = InvPhi(156) = {157, 169, 237, 314, 316, 338, 474}.
		

Crossrefs

Programs

  • Maple
    [seq(nops(invphi(ithprime(j)*(-1+ithprime(j)))),j=1..128)];
  • PARI
    a(n) = my(p=prime(n)); #invphi(p*(p-1)); \\ Michel Marcus, Mar 25 2020

Formula

a(n) = Card[InvPhi(p(n)*(p(n)-1))] = Card[InvPhi(A036689(n))].

A079143 Numbers divisible by prime ceilings of their square roots + 1.

Original entry on oeis.org

2, 4, 6, 9, 20, 25, 42, 49, 110, 121, 156, 169, 272, 289, 342, 361, 506, 529, 812, 841, 930, 961, 1332, 1369, 1640, 1681, 1806, 1849, 2162, 2209, 2756, 2809, 3422, 3481, 3660, 3721, 4422, 4489, 4970, 5041, 5256, 5329, 6162, 6241, 6806, 6889, 7832, 7921
Offset: 1

Views

Author

Cino Hilliard, Dec 26 2002

Keywords

Comments

n is in the sequence if r=ceiling(sqrt(n)) is prime and r divides n.
Union of the 2 sequences A001248={p^2} and A036689={p(p-1)} for p prime.
Sum of the reciprocals = 1.225...

Examples

			930 is in the sequence because ceiling(sqrt(930)) = 31 and 930/31 = 30.
		

Programs

  • Mathematica
    Flatten[ #(#-{1, 0})&/@Prime/@Range[30]]
    a[n_] := (p=Prime[Ceiling[n/2]])(p-Mod[n, 2])
  • PARI
    ipsqrt(n) = { sr= 0; for(x=1,n, v = ceil(sqrt(x)); if(isprime(v) && x%v == 0, print1(x" "); sr+=1.0/x; ); ); print(); print(sr); } \\ numbers divisible by the prime ceilings of their square roots.

Formula

a(n) = prime(ceiling(n/2))*(prime(ceiling(n/2)) - (n mod 2))

A079477 First prime after phi(prime(n)^2).

Original entry on oeis.org

3, 7, 23, 43, 113, 157, 277, 347, 509, 821, 937, 1361, 1657, 1811, 2179, 2767, 3433, 3671, 4423, 4973, 5261, 6163, 6823, 7841, 9319, 10103, 10513, 11351, 11777, 12659, 16007, 17033, 18637, 19183, 22063, 22651, 24499, 26407, 27733, 29759, 31873, 32587, 36293
Offset: 1

Views

Author

Jon Perry, Jan 15 2003

Keywords

Comments

The sequence always increases.

Examples

			p_3=5, phi(5^2)=phi(25)=20, therefore a(3)=23
		

Crossrefs

Programs

  • Maple
    a:= n-> nextprime(2*binomial(ithprime(n),2)):
    seq(a(n), n=1..44);  # Alois P. Heinz, Mar 15 2023
  • Mathematica
    Prime[1+PrimePi[EulerPhi[Prime[Range[41]]^2]]] (* T. D. Noe, Nov 15 2006 *)
  • PARI
    forprime (p=2,200, print1(nextprime(eulerphi(p^2))","))

Formula

a(n) = A151800(A036689(n)). - Michel Marcus, Mar 15 2023

Extensions

Corrected by T. D. Noe, Nov 15 2006

A088659 a(n) = n*(p-1) where p is the largest prime factor of n.

Original entry on oeis.org

2, 6, 4, 20, 12, 42, 8, 18, 40, 110, 24, 156, 84, 60, 16, 272, 36, 342, 80, 126, 220, 506, 48, 100, 312, 54, 168, 812, 120, 930, 32, 330, 544, 210, 72, 1332, 684, 468, 160, 1640, 252, 1806, 440, 180, 1012, 2162, 96, 294, 200, 816, 624, 2756, 108, 550, 336, 1026
Offset: 2

Views

Author

Benoit Cloitre, Nov 21 2003

Keywords

Comments

It is conjectured that sequence gives period length of the periodic sequence {A088957(k) mod n}_{k>n}.
The records of this sequence are given by A036689 (product of a prime and the previous number). - Michel Marcus, May 19 2015

Programs

  • Maple
    seq(n*(max(numtheory:-factorset(n))-1), n=2..100); # Robert Israel, May 19 2015
  • Mathematica
    Table[n*(FactorInteger[n][[-1, 1]] - 1), {n, 2, 57}] (* Ivan Neretin, May 19 2015 *)
  • PARI
    a(n)=n*(component(factor(n),1)-1)

Formula

For p the k-th prime, a(p) = A036689(k). - Michel Marcus, May 19 2015
a(n) = n*A070777(n). - Michel Marcus, May 19 2015

A137148 a(n) = k*phi(k), where k is the n-th nonprime number.

Original entry on oeis.org

1, 8, 12, 32, 54, 40, 48, 84, 120, 128, 108, 160, 252, 220, 192, 500, 312, 486, 336, 240, 512, 660, 544, 840, 432, 684, 936, 640, 504, 880, 1080, 1012, 768, 2058, 1000, 1632, 1248, 972, 2200, 1344, 2052, 1624, 960, 1860, 2268, 2048, 3120, 1320, 2176, 3036
Offset: 1

Views

Author

Artur Jasinski, Jan 23 2008

Keywords

Comments

Numbers that occur in A002618 but not in A036689.

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[!PrimeQ[n], AppendTo[a, n EulerPhi[n]]], {n, 1, 100}]; a

Formula

a(n) = A002618(A018252(n)). - R. J. Mathar, Jan 18 2021
Sum_{n>=1} 1/a(n) = A065484 - A136141 = 1.430699927388... . - Amiram Eldar, Oct 26 2024

A228529 a(n) = prime(n*prime(n)).

Original entry on oeis.org

3, 13, 47, 107, 257, 397, 653, 881, 1279, 1889, 2293, 3119, 3847, 4423, 5323, 6563, 7937, 8819, 10391, 11833, 12889, 14831, 16477, 18713, 21599, 23603, 25189, 27409, 29063, 31511, 37159, 39869, 43321, 45589, 50923, 53281, 57271, 61561, 65173, 69821, 74383
Offset: 1

Views

Author

Omar E. Pol, Oct 20 2013

Keywords

Examples

			For n = 2, prime(2*prime(2)) = prime(2*3) = prime(6) = 13, so a(2) = 13.
		

Crossrefs

Programs

  • Mathematica
    Table[Prime[n*Prime[n]], {n, 100}] (* T. D. Noe, Oct 22 2013 *)
  • PARI
    a(n) = prime(n*prime(n)); \\ Michel Marcus, Oct 22 2013

Formula

a(n) = A000040(A033286(n)).

A308394 Numbers which can be written in the form m^k - m with m prime and k a positive integer.

Original entry on oeis.org

0, 2, 6, 14, 20, 24, 30, 42, 62, 78, 110, 120, 126, 156, 240, 254, 272, 336, 342, 506, 510, 620, 726, 812, 930, 1022, 1320, 1332, 1640, 1806, 2046, 2162, 2184, 2394, 2756, 3120, 3422, 3660, 4094, 4422, 4896, 4970, 5256, 6162, 6558, 6806, 6840, 7832, 8190, 9312
Offset: 1

Views

Author

Craig J. Beisel, May 24 2019

Keywords

Comments

The only known terms which have two representations where m is prime are 6 and 2184. It is conjectured by Bennett these are the only terms with this property.

Examples

			a(9) = 2^6 - 2 = 62.
For the two terms known to have two representations we have a(3) = 6 = 2^3 - 2 = 3^2 - 3 and a(33)= 2184 = 3^7 - 3 = 13^3 - 13.
		

Crossrefs

Subsequences: A000918 (2^n - 2), A036689 (p^2 - p), A058809 (3^n - 3), A178671 (5^n - 5).

Programs

  • Maple
    N:= 10^6; # to get all terms <= N
    P:= select(isprime,[2,seq(i,i=3..floor((1+sqrt(1+4*N))/2),2)]):
    S:= {0,seq(seq(m^k-m,k=2..floor(log[m](N+m))),m=P)}:
    sort(convert(S,list)); # Robert Israel, Aug 11 2019
  • PARI
    x=List([]); lim=10000; forprime(m=2, lim, for(k=1, 100, y=(m^k-m); if(y>lim, break, i=setsearch(x, y, 1); if(i>0, listinsert(x, y, i))))); for(i=1, #x, print(x[i]));
    
  • PARI
    isok(n) = {forprime(p=2, oo, my(keepk = 0); for (k=1, oo, if ((x=p^k - p) == n, return(1)); if (x > n, keepk = k; break);); if (keepk == 2, break););} \\ Michel Marcus, Aug 06 2019

A119958 Numerator of determinant of n X n matrix with elements M[i,j] = (p^2 - p + 1)/(p*(p-1)) if i=j and 1 otherwise, where p=Prime[i].

Original entry on oeis.org

3, 7, 147, 301, 33411, 1748509, 36718689, 4198170109, 709490748421, 82402282638039, 1345903949754637, 1564158644309443, 855594778437265321, 5136411178193150947, 3703352459477261832787, 261798531558431048025481
Offset: 1

Views

Author

Alexander Adamchuk, Aug 02 2006

Keywords

Comments

All square prime divisors of a(n) {7,13,43,139,19,31,61,37,607,523,67,79,1201,241,1171,157,109,...} belong to A002476[n] Primes of form 6n + 1.

Crossrefs

Programs

  • Mathematica
    Numerator[ Table[ Det[ DiagonalMatrix[ Table[1/(Prime[i]*(Prime[i]-1)), {i, 1, n} ] + 1 ]], {n, 1, 150}]]
Previous Showing 41-50 of 52 results. Next