cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A369440 Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x^2)^2) ).

Original entry on oeis.org

1, 1, 3, 9, 30, 107, 396, 1513, 5915, 23554, 95202, 389555, 1610588, 6717816, 28234064, 119452553, 508330809, 2174393331, 9343913933, 40319400738, 174630125428, 758916134002, 3308320668768, 14462616815619, 63388694309005, 278492994845776, 1226241871745376
Offset: 0

Views

Author

Seiichi Manyama, Jan 23 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x^2)^2))/x)
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial(u*(n+1), n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(n+1,n-2*k).

A002844 Number of non-isentropic binary rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 13, 36, 102, 296, 871, 2599, 7830, 23799, 72855, 224455, 695303, 2164491
Offset: 1

Views

Author

Keywords

Comments

From Richard Guy's 1971 letter: "[Studied by] Helen Alderson, J. H. Conway, etc. at Cambridge. These are rooted trees with two branches at each stage and if A,B,C,D (see drawing [in letter]) are further growths, then one treats (AB)(CD) as equivalent to (AC)(BD) - otherwise one distinguishes left and right. [The sequence gives] the number of equivalence classes of such trees."

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bears a superficial resemblance to A036765.

Extensions

Revised by N. J. A. Sloane, Dec 15 2016
a(11)-a(14) from Doron Zeilberger, Jan 31 2017
a(15)-a(16) from Sean A. Irvine, Sep 29 2023

A135305 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UUUU's.

Original entry on oeis.org

1, 1, 2, 5, 13, 1, 36, 5, 1, 104, 21, 6, 1, 309, 84, 28, 7, 1, 939, 322, 124, 36, 8, 1, 2905, 1206, 522, 174, 45, 9, 1, 9118, 4455, 2127, 795, 235, 55, 10, 1, 28964, 16302, 8492, 3487, 1155, 308, 66, 11, 1, 92940, 59268, 33396, 14894, 5412, 1617, 394, 78, 12, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

Each of rows 0, 1, 2, 3 has one entry. Row n (n >= 3) has n-2 entries. Row sums yield the Catalan numbers (A000108). Column 0 yields A036765. - Emeric Deutsch, Dec 14 2007

Examples

			Triangle begins:
1
1
2
5
13 1
36 5 1
104 21 6 1
309 84 28 7 1
...
T(5,1) = 5 because we have UUUUDUDDDD, UUUUDDUDDD, UUUUDDDUDD, UUUUDDDDUD and UDUUUUDDDD.
		

Crossrefs

Programs

  • Maple
    eq:=(1-t)*z^3*G^3+z*(t+z-t*z)*G^2+((1-t)*z-1)*G+1: g:=RootOf(eq,G): gser:= simplify(series(g,z=0,15)): for n from 0 to 12 do P[n]:=sort(coeff(gser,z,n)) end do: 1;1;2; for n from 3 to 12 do seq(coeff(P[n],t,j),j=0..n-3) end do; # yields sequence in triangular form; # Emeric Deutsch, Dec 14 2007
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
          `if`(x=0, 1, expand(b(x-1, y+1, min(t+1, 4))*
          `if`(t=4, z, 1) +b(x-1, y-1, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 02 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y+1, Min[t+1, 4]]*If[t == 4, z, 1] + b[x-1, y-1, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]] @ b[2*n, 0, 1]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Nov 28 2014, after Alois P. Heinz *)

Formula

G.f.: G=G(t,z) satisfies (1-t)*z^3*G^3 + z*(t+z-t*z)*G^2 + ((1-t)*z-1)*G+1 = 0. - Emeric Deutsch, Dec 14 2007

Extensions

Edited and extended by Emeric Deutsch, Dec 14 2007

A198944 G.f.: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k*A(x)^k] * x^n/n ).

Original entry on oeis.org

1, 1, 2, 7, 23, 78, 291, 1126, 4436, 17910, 73773, 308188, 1303402, 5573133, 24050795, 104620985, 458324429, 2020417339, 8956142180, 39899217350, 178549985024, 802275736073, 3618237414959, 16373514195570, 74325340129430, 338356926399193, 1544406450870590
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2011

Keywords

Comments

Compare to a g.f. G(x) of A036765 (rooted trees with a degree constraint):
G(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2 * x^k*G(x)^k] * x^n/n ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 23*x^4 + 78*x^5 + 291*x^6 +...
where
log(A(x)) = (1 + x*A(x))*x + (1 + 2^3*x*A(x) + x^2*A(x)^2)*x^2/2 +
(1 + 3^3*x*A(x) + 3^3*x^2*A(x)^2 + x^3*A(x)^3)*x^3/3 +
(1 + 4^3*x*A(x) + 6^3*x^2*A(x)^2 + 4^3*x^3*A(x)^3 + x^4*A(x)^4)*x^4/4 +
(1 + 5^3*x*A(x) + 10^3*x^2*A(x)^2 + 10^3*x^3*A(x)^3 + 5^3*x^4*A(x)^4 + x^5*A(x)^5)*x^5/5 +...
more explicitly,
log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 63*x^4/4 + 251*x^5/5 + 1110*x^6/6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*(x*A+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)}

A303271 Number of ordered rooted trees with n non-root nodes such that the maximal outdegree equals three.

Original entry on oeis.org

1, 4, 15, 53, 182, 616, 2070, 6930, 23166, 77429, 258973, 867230, 2908633, 9772556, 32896088, 110949072, 374934201, 1269505482, 4306750577, 14638006449, 49843505965, 170021694271, 580954640775, 1988357053020, 6816047416230, 23400699072231, 80455436055699
Offset: 3

Views

Author

Alois P. Heinz, Apr 20 2018

Keywords

Crossrefs

Column k=3 of A203717.

Programs

  • Maple
    b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, k), j=1..min(1, u))+
          add(b(u+j-1, o-j, k), j=1..min(k, o)))
        end:
    a:= n-> b(0, n, 3)-b(0, n, 2):
    seq(a(n), n=3..35);

Formula

a(n) = A036765(n) - A001006(n).

A337512 G.f. A(x) satisfies: A(x) = 1 - Sum_{k=1..3} (x * A(x))^k.

Original entry on oeis.org

1, -1, 0, 1, 1, -6, 4, 13, -13, -61, 124, 120, -516, -352, 2848, -923, -11337, 10165, 49352, -88655, -159903, 512430, 450812, -2873276, -11660, 13752804, -9160464, -62238760, 91526344, 239932224, -620180224, -768156379, 3683079807, 1168683353
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 33; A[] = 0; Do[A[x] = 1 - Sum[(x A[x])^k, {k, 1, 3}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 34; CoefficientList[(1/x) InverseSeries[Series[x/(1 - x - x^2 - x^3), {x, 0, nmax}], x], x]
    b[m_, r_, k_] := b[m, r, k] = If[m + r == 0, 1, Sum[b[m - j, r + j - 1, k], {j, 1, Min[1, m]}] - Sum[b[m + j - 1, r - j, k], {j, 1, Min[k, r]}]]; a[n_] := b[0, n, 3]; Table[a[n], {n, 0, 33}]

Formula

G.f.: A(x) = (1/x) * Series_Reversion(x / (1 - x - x^2 - x^3)).

A378425 Expansion of (1/x) * Series_Reversion( x / (1 + x + x^2 * (1 + x)^3) ).

Original entry on oeis.org

1, 1, 2, 7, 24, 82, 297, 1121, 4317, 16900, 67185, 270480, 1100122, 4513809, 18661618, 77666327, 325117967, 1368001765, 5782686120, 24545144206, 104573104040, 447036252525, 1916918691196, 8243075111450, 35538551601880, 153584392913986, 665201585797986, 2887012910233897
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x+x^2*(1+x)^3))/x)
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(n+2*k+1, n-2*k))/(n+1);

Formula

G.f.: exp( Sum_{k>=1} A378406(k) * x^k/k ).
a(n) = (1/(n+1)) * [x^n] (1 + x + x^2 * (1 + x)^3)^(n+1).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(n+2*k+1,n-2*k).

A059967 Number of 9-ary trees.

Original entry on oeis.org

1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, 1416298046436, 28748759731965, 589546754316126, 12195537924351375, 254184908607118800, 5332692942907262361, 112524941404978156215
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Mar 05 2001

Keywords

Crossrefs

Related algebraic sequences concerning trees: strictly k-ary trees (A000108: s=x+s^2, A001263: s=(x, y)+(x, s)+(s, y)+(s, s))), (A001764: s=x+s^3), (A002293: s=x+s^4), (A002294: s=x+s^5), (A002295: s=x+s^6), (A002296: s=x+s^7), (A007556: s=x+s^8), at most k-ary trees (A001006: s=x+xs+xs^2), (A036765-A036769, s=x+xs^2....+xs^k, k=3, 4, 5, 6, 7).

Programs

  • Maple
    with(combinat): for n from 1 to 40 do printf(`%d,`,binomial(9*n,n)/((9-1)*n+1)) od:

Formula

G.f. A(x) satisfies: A = x + A^9.
a(n) = C(k*n, n)/((k-1)*n+1), k=9.

Extensions

More terms from James Sellers, Mar 15 2001

A211248 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^4).

Original entry on oeis.org

1, 1, 4, 20, 114, 703, 4565, 30752, 212921, 1505916, 10833164, 79018804, 583062388, 4344431508, 32641910199, 247033970128, 1881402836376, 14408753414558, 110897147057354, 857307054338476, 6653979156676983, 51831065993122915, 405060413133136902, 3175019470333290488
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2 and q=1.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 20*x^3 + 114*x^4 + 703*x^5 + 4565*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 85*x^3 + 522*x^4 + 3381*x^5 + 22735*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 132*x^3 + 841*x^4 + 5588*x^5 + 38288*x^6 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 343*x^3 + 2429*x^4 + 17430*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^4 + x^3*A(x)^7.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x))*x*A(x)^2 + (1 + 2^2*x*A(x) + x^2*A(x)^2)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x) + 3^2*x^2*A(x)^2 + x^3*A(x)^3)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x) + 6^2*x^2*A(x)^2 + 4^2*x^3*A(x)^3 + x^4*A(x)^4)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x) + 10^2*x^2*A(x)^2 + 10^2*x^3*A(x)^3 + 5^2*x^4*A(x)^4 + x^5*A(x)^5)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x) + 15^2*x^2*A(x)^2 + 20^2*x^3*A(x)^3 + 15^2*x^4*A(x)^4 + 6^2*x^5*A(x)^5 + x^6*A(x)^6)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 49*x^3/3 + 359*x^4/4 + 2706*x^5/5 + 20767*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1 - x - x^3)^2/(1 + x^2)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
  • PARI
    {a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-x-x^3)^2/(1+x^2+x*O(x^n))^2 ) ), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x*(1-x-x^3)^2/(1+x^2)^2 ) ).
(2) A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
(3) a(n) = [x^n] ((1+x^2)/(1-x-x^3))^(2*n+2) / (n+1).
(4) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^k) * x^n*A(x)^(2*n)/n ).
(5) A(x) = exp( Sum_{n>=1} (1-x*A(x))^(2*n+1) * (Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k) * x^n*A(x)^(2*n)/n ).
(6) A(x) = (1/x)*Series_Reversion(x/G(x)) where A(x) = G(x*A(x)) and A(x/G(x)) = G(x) = (1 + x*G(x)^2)*(1 + x^2*G(x)^2) is the g.f. of A199874.
a(n) ~ s * sqrt((1 + 2*r*s + 3*r^2*s^4) / (3*Pi*(1 + 2*r*s + 7*r^2*s^4))) / (2*n^(3/2)*r^n), where r = 0.1194948955213353102456218138370139612914667337222... and s = 1.428770161302757679335810379290625953730830139744... are real roots of the system of equations (1 + r*s^3)*(1 + r^2*s^4) = s, r*s^2*(3 + 4*r*s + 7*r^2*s^4) = 1. - Vaclav Kotesovec, Nov 22 2017

A211249 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^5).

Original entry on oeis.org

1, 1, 4, 21, 126, 819, 5611, 39900, 291719, 2179181, 16560175, 127617168, 994951887, 7833555324, 62196300997, 497425570173, 4003607595960, 32404662671330, 263586896132154, 2153631763231319, 17666722629907960, 145449082369322208, 1201414340736684702
Offset: 0

Views

Author

Paul D. Hanna, Apr 05 2012

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2 and q=2.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 819*x^5 + 5611*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 88*x^3 + 564*x^4 + 3828*x^5 + 27040*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 195*x^3 + 1335*x^4 + 9486*x^5 + 69305*x^6 +...
A(x)^8 = 1 + 8*x + 60*x^2 + 448*x^3 + 3374*x^4 + 25704*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^5 + x^3*A(x)^8.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^2)*x*A(x)^2 +
(1 + 2^2*x*A(x)^2 + x^2*A(x)^4)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x)^2 + 3^2*x^2*A(x)^4 + x^3*A(x)^6)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x)^2 + 6^2*x^2*A(x)^4 + 4^2*x^3*A(x)^6 + x^4*A(x)^8)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x)^2 + 10^2*x^2*A(x)^4 + 10^2*x^3*A(x)^6 + 5^2*x^4*A(x)^8 + x^5*A(x)^10)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x)^2 + 15^2*x^2*A(x)^4 + 20^2*x^3*A(x)^6 + 15^2*x^4*A(x)^8 + 6^2*x^5*A(x)^10 + x^6*A(x)^12)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 52*x^3/3 + 403*x^4/4 + 3211*x^5/5 + 26050*x^6/6 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1-2*x-x^2+x^4 + (1-x-x^2) * Sqrt[(1+x+x^2)*(1-3*x+x^2)])/2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
  • PARI
    {a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-2*x-x^2+x^4 + (1-x-x^2)*sqrt( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n)))/2 ) ), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j,j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f.: sqrt( (1/x)*Series_Reversion( x*(1-2*x-x^2+x^4 + (1-x-x^2)*sqrt( (1+x+x^2)*(1-3*x+x^2) ))/2 ) ).
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion(x/G(x)) where A(x) = G(x*A(x)) and A(x/G(x)) = G(x) is the g.f. of A200075.
(2) A(x) = sqrt( (1/x)*Series_Reversion( x/G(x)^2 ) ) where A(x) = G(x*A(x)^2) and G(x) = A(x/G(x)^2) and 1+x*G(x) is the g.f. of A004148.
(3) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(2*k)) * x^n*A(x)^(2*n)/n ).
(4) A(x) = exp( Sum_{n>=1} (1-x*A(x)^2)^(2*n+1) * (Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(2*k)) * x^n*A(x)^(2*n)/n ).
a(n) ~ s * sqrt((1 + 2*r*s^2 + 3*r^2*s^5) / (Pi*(3 + 10*r*s^2 + 28*r^2*s^5))) / (2*n^(3/2)*r^n), where r = 0.1130413665724951344267888513870607581680912144315... and s = 1.385648922830296011590145919380626723251960276539... are real roots of the system of equations (1 + r*s^3)*(1 + r^2*s^5) = s, r*s^2*(3 + 5*r*s^2 + 8*r^2*s^5) = 1. - Vaclav Kotesovec, Nov 22 2017
Previous Showing 31-40 of 48 results. Next