cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A239275 a(n) = numerator(2^n * Bernoulli(n, 1)).

Original entry on oeis.org

1, 1, 2, 0, -8, 0, 32, 0, -128, 0, 2560, 0, -1415168, 0, 57344, 0, -118521856, 0, 5749735424, 0, -91546451968, 0, 1792043646976, 0, -1982765704675328, 0, 286994513002496, 0, -3187598700536922112, 0, 4625594563496048066560, 0, -16555640873195841519616, 0, 22142170101965089931264, 0
Offset: 0

Views

Author

Paul Curtz, Mar 13 2014

Keywords

Comments

Difference table of f(n) = 2^n *A164555(n)/A027642(n) = a(n)/A141459(n):
1, 1, 2/3, 0, -8/15, 0, 32/21, 0,...
0, -1/3, -2/3, -8/15, 8/15, 32/21, -32/21,...
-1/3, -1/3, 2/15, 16/15, 104/105, -64/21,...
0, 7/15, 14/15, -8/105, -424/105,...
7/15, 7/15, -106/105, -416/105,...
0, -31/21, -62/31,
-31/21, -31/21,...
0,... etc.
Main diagonal: A212196(n)/A181131(n). See A190339(n).
First upper diagonal: A229023(n)/A181131(n).
The inverse binomial transform of f(n) is g(n). Reciprocally, the inverse binomial transform of g(n) is f(n) with -1 instead of f(1)=1, i.e., f(n) signed.
Sum of the antidiagonals: 1,1,0,-1,0,3,0,-17,... = (-1)^n*A036968(n) = -A226158(n+1).
Following A211163(n+2), f(n) is the coefficients of a polynomial in Pi^n.
Bernoulli numbers, twice, and Genocchi numbers, twice, are linked to Pi.
f(n) - g(n) = -A226158(n).
Also the numerators of the centralized Bernoulli polynomials 2^n*Bernoulli(n, x/2+1/2) evaluated at x=1. The denominators are A141459. - Peter Luschny, Nov 22 2015
(-1)^n*a(n) = 2^n*numerator(A027641(n)/A027642(n)) (that is the present sequence with a(1) = -1 instead of +1). - Wolfdieter Lang, Jul 05 2017

Crossrefs

Cf. A141459 (denominators), A001896/A001897, A027641/A027642.

Programs

  • Maple
    seq(numer(2^n*bernoulli(n, 1)), n=0..35); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[Numerator[2^n*BernoulliB[n, 1]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • Python
    from sympy import bernoulli
    def a(n): return (2**n * bernoulli(n, 1)).numerator
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017

Formula

a(n) = numerators of 2^n * A164555(n)/A027642(n).
Numerators of the binomial transform of A157779(n)/(interleave A001897(n), 1)(conjectured).

A227608 Denominators of A225825(n) difference table written by antidiagonals.

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 2, 3, 3, 2, 30, 15, 15, 15, 30, 2, 15, 15, 15, 15, 2, 42, 21, 105, 105, 105, 21, 42, 2, 21, 21, 105, 105, 21, 21, 2, 30, 15, 105, 105, 105, 105, 105, 15, 30, 2, 15, 15, 105, 105, 105, 105, 15, 15, 2, 66, 33, 165, 165, 1155, 231, 1155, 165, 165, 33, 66, 2, 33, 33, 165, 165, 231, 231, 165, 165, 33, 33, 2
Offset: 0

Views

Author

Paul Curtz, Aug 10 2013

Keywords

Examples

			1,
-1/2,      1/2,
-1/6,     -2/3,     -1/6,
1/2,       1/3,     -1/3,     -1/2,
7/30,    11/15,    16/15,    11/15,     7/30,
-3/2,   -19/15,    -8/15,     8/15,    19/15,    3/2,
-31/42, -47/21, -368/105, -424/105, -368/105, -47/21, -31/42.
Row sums: 1, 0/2, -6/6, 0/6, 90/30, 0/30, -3570/210, 0/210, 32550/210,... .
Are the denominators A034386(n+1)?
Reduced row sums: 1, 0, -1, 0, 3, 0, -17, 0, 155,... = -A036968(n+1)? See A226158(n+2). First 100 terms checked by Jean-François Alcover.
		

Crossrefs

Programs

  • Mathematica
    max = 12; b[0] = 1; b[n_] := Numerator[ BernoulliB[n, 1/2] - (n+1)*EulerE[n, 0]]; t = Table[b[n], {n, 0, max}] / Table[ Sum[ Boole[ PrimeQ[d+1]]/(d+1), {d, Divisors[n]}] // Denominator, {n, 0, max}]; dt = Table[ Differences[t, n], {n, 0, max}]; Table[ dt[[n-k+1, k]] // Denominator, {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)

Extensions

More terms from Jean-François Alcover, Aug 12 2013

A321217 Genocchi irregular primes.

Original entry on oeis.org

17, 31, 37, 41, 43, 59, 67, 73, 89, 97, 101, 103, 109, 113, 127, 131, 137, 149, 151, 157, 193, 223, 229, 233, 241, 251, 257, 263, 271, 277, 281, 283, 293, 307, 311, 313, 331, 337, 347, 353, 379, 389, 397, 401, 409, 421, 431, 433, 439, 449, 457, 461, 463, 467, 491, 499
Offset: 1

Views

Author

Michel Marcus, Oct 31 2018

Keywords

Comments

An odd prime p is G-irregular if it divides at least one of the integers G2, G4, ..., G(p-3).
Conjecture (Hu et al., 2019): The asymptotic density of this sequence within the primes is 1 - 3*A/(2*sqrt(e)) = 0.659776..., where A is Artin's constant (A005596). - Amiram Eldar, Dec 06 2022

Crossrefs

Cf. A036968 (Genocchi numbers), A000928 (irregular primes), A120337 (Euler-irregular primes), A128197 (strong irregular primes), A250216 (weak irregular primes), A005596.

Programs

  • Maple
    A321217_list := proc(bound)
       local ae, F, p, m, maxp; F := NULL;
       for m from 2 by 2 to bound do
          p := nextprime(m+1);
          ae := abs(m*euler(m-1, 0));
          maxp := min(ae, bound);
          while p <= maxp do
              if ae mod p = 0 then F := F, p fi;
              p := nextprime(p)
          od
       od;
    sort({F}) end: A321217_list(500); # Peter Luschny, Nov 11 2018
  • Mathematica
    G[n_] := G[n] = n EulerE[n - 1, 0];
    GenocchiIrregularQ[p_] := AnyTrue[Table[G[k], {k, 2, p-3, 2}], Divisible[#, p]&];
    Select[Prime[Range[2, 100]], GenocchiIrregularQ] (* Jean-François Alcover, Nov 16 2018 *)

Extensions

More terms from Peter Luschny, Nov 11 2018

A357240 Expansion of e.g.f. 2 * (exp(x) - 1) / (exp(exp(x) - 1) + 1).

Original entry on oeis.org

0, 1, 0, -2, -5, -4, 32, 225, 794, 190, -22291, -200298, -920244, 924223, 65848880, 716920754, 3831260555, -13147083976, -575844827780, -7162425813919, -40755845041730, 320194436283162, 11810647258173653, 161108090793013130, 896865861205240824, -14305712791762925929, -487306962045115504436
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2022

Keywords

Comments

Stirling transform of the Genocchi numbers (of first kind, A036968).

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 0,
          m*euler(m-1, 0)), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..26);  # Alois P. Heinz, Jun 23 2023
  • Mathematica
    nmax = 26; CoefficientList[Series[2 (Exp[x] - 1)/(Exp[Exp[x] - 1] + 1), {x, 0, nmax}], x] Range[0, nmax]!
    Table[2 Sum[StirlingS2[n, k] (1 - 2^k) BernoulliB[k], {k, 0, n}], {n, 0, 26}]
  • PARI
    a(n) = 2*sum(k=0, n, stirling(n, k, 2)*(1-2^k)*bernfrac(k)); \\ Michel Marcus, Sep 20 2022

Formula

a(n) = 2 * Sum_{k=0..n} Stirling2(n,k) * (1 - 2^k) * Bernoulli(k).
a(n) ~ Pi^(3/2) * 2^(n + 7/2) * n^(n + 1/2) * (cos(n*arctan(2*arctan(Pi)/log(1 + Pi^2))) * (Pi*log(1 + Pi^2) + 2*arctan(Pi)) + (log(1 + Pi^2) - 2*Pi*arctan(Pi)) * sin(n*arctan(2*arctan(Pi)/log(1 + Pi^2)))) / ((1 + Pi^2) * exp(n) * (4*arctan(Pi)^2 + log(1 + Pi^2)^2)^(n/2 + 1)). - Vaclav Kotesovec, Oct 04 2022

A278331 Shifted sequence of second differences of Genocchi numbers.

Original entry on oeis.org

0, -2, -2, 6, 14, -34, -138, 310, 1918, -4146, -36154, 76454, 891342, -1859138, -27891050, 57641238, 1080832286, -2219305810, -50833628826, 103886563462, 2853207760750, -5810302084962, -188424521441482, 382659344967926, 14464296482284734, -29311252309537394, -1277229462293249018
Offset: 0

Views

Author

Keywords

Comments

This is an autosequence of the first kind (array of successive differences shows typical zero diagonal).
Last digits are apparently of period 20.
From A226158(n) for the continuity of autosequences of the first kind.
b(n) = 0, 1, -1, 0, 1, 0, -3, 0, 17, ... = A226158(n) with 1 as second term instead of -1.
c(n) = 0, 0, -1, 0, 1, 0, -3, 0, 17, ... = A226158(n) with 0 as second term instead of -1.
Respective difference tables:
0, -1, -1, 0, 1, 0, -3, 0, 17, ...
-1, 0, 1, 1, -1, -3 , 3, 17, -17, ...
1, 1, 0, -2, -2, 6, 14, -34, -138, ...
etc,
0, 1, -1, 0, 1, 0, -3, 0, 17, ... = 0 followed by A036968(n+1)
1, -2, 1, 1, -1, -3, 3, 17, -17, ...
-3, 3, 0, -2, -2, 6, 14, -34, -138, ...
etc,
0, 0, -1, 0, 1, 0, -3, 0, 17, ...
0, -1, 1, 1, -1, -3, 3, 17, -17, ...
-1, 2, 0, -2, -2, 6, 14, -34, -138, ...
etc.
Since it is in the three tables, a(n) is the core of the Genocchi numbers.

Crossrefs

Cf. A001469, A014781, A036968, A005439 (a(n) second and third diagonals), A164555/A027642, A209308, A226158, A240581(n)/A239315(n) (core of Bernoulli numbers).

Programs

  • Mathematica
    g[0] = 0; g[1] = -1; g[n_] := n*EulerE[n-1, 0]; G = Table[g[n], {n, 0, 30}]; Drop[Differences[G, 2], 2]
    (* or, from Seidel's triangle A014781: *)
    max = 26; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n + 1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n - 1, i], {i, k, max}], Sum[T[n - 1, i], {i, 1, k}]]; T[, ] = 0; a[n_] := With[{k = Floor[(n - 1)/2] + 1}, (-1)^k*T[n + 3, k]]; Table[a[n], {n, 0, max}]

Formula

a(n) = (n+2)*E(n+1, 0) - 2*(n+3)*E(n+2, 0) + (n+4)*E(n+3, 0), where E(n,x) is the n-th Euler polynomial.
a(n) = -2*(2^(n+2)-1)*B(n+2) + 4*(2^(n+3)-1)*B(n+3) - 2*(2^(n+4)-1)*B(n+4), where B(n) is the n-th Bernoulli number.

A290701 a(n) = Sum_{k=1..n-1} binomial(n, k)*G_n*G_{n-k} where G_n is the n-th Genocchi number (of the first kind).

Original entry on oeis.org

2, -6, 6, 10, -30, -42, 238, 306, -2790, -3410, 45606, 53898, -993902, -1146810, 27887070, 31605346, -979901046, -1095183522, 42166810390, 46605422010, -2181617832702, -2389390959626, 133636947954126, 145257552124050, -9566483624198150, -10331802314134002
Offset: 2

Views

Author

Seiichi Manyama, Aug 09 2017

Keywords

Crossrefs

Cf. A036968.

Formula

a(n) = 2*n*A036968(n-1) + 2*(n-1)*A036968(n).

A305711 Expansion of e.g.f. exp(2*x/(exp(x) + 1)).

Original entry on oeis.org

1, 1, 0, -2, -1, 11, 13, -111, -220, 1756, 5051, -39775, -153191, 1215345, 5952668, -48020714, -288569149, 2377190003, 17069110381, -143857868895, -1209439895944, 10435153277620, 101078662547567, -892827447251575, -9834570608359487, 88900938146195601, 1101567283699652888
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2018

Keywords

Examples

			exp(2*x/(exp(x) + 1)) = 1 + x - 2*x^3/3! - x^4/4! + 11*x^5/5! + 13*x^6/6! - 111*x^7/7! - 220*x^8/8! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(2*x/(exp(x)+1)),x=0,27): seq(n!*coeff(a,x,n),n=0..26); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 26; CoefficientList[Series[Exp[2 x/(Exp[x] + 1)], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[k EulerE[k - 1, 0] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 26}]
    a[n_] := a[n] = Sum[2 (1 - 2^k) BernoulliB[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 26}]

A305922 Expansion of e.g.f. log(1 + 2*x/(exp(x) + 1)).

Original entry on oeis.org

0, 1, -2, 5, -20, 109, -738, 5991, -56760, 614601, -7486670, 101330635, -1508641140, 24503026989, -431137315434, 8169513007215, -165859346028656, 3591802533860497, -82644488286784326, 2013441061219406739, -51777972823724776620, 1401611202556240950645, -39838169568923591411810
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 14 2018

Keywords

Comments

Logarithmic transform of A036968.

Examples

			E.g.f.: A(x) = x - 2*x^2/2! + 5*x^3/3! - 20*x^4/4! + 109*x^5/5! - 738*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(a(j)*j*
          t(n-j)*binomial(n, j), j=1..n-1)/n))(i-> i*euler(i-1, 0))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 04 2018
  • Mathematica
    nmax = 22; CoefficientList[Series[Log[1 + 2 x/(Exp[x] + 1)], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = n EulerE[n - 1, 0] - Sum[k Binomial[n, k] (n - k) EulerE[n - k - 1, 0] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 22}]
    a[n_] := a[n] = 2 (1 - 2^n) BernoulliB[n] - Sum[k Binomial[n, k] 2 (1 - 2^(n - k)) BernoulliB[n - k] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 22}]

A321595 Decimal expansion of the sum of the reciprocal of the Genocchi numbers (of first kind) with even index (negated).

Original entry on oeis.org

2, 8, 0, 5, 0, 4, 1, 4, 1, 7, 2, 5, 6, 5, 9, 8, 7, 8, 7, 7, 6, 8, 8, 7, 9, 4, 3, 1, 6, 3, 9, 9, 3, 3, 1, 7, 5, 8, 8, 5, 9, 6, 0, 4, 2, 3, 7, 5, 2, 6, 5, 9, 3, 9, 6, 5, 8, 2, 7, 8, 7, 0, 2, 7, 7, 8, 3, 8, 8, 3, 0, 4, 9, 1, 8, 2, 0, 4, 4, 8, 3, 9, 4, 6, 1, 6, 8, 7
Offset: 0

Views

Author

Paolo P. Lava, Nov 14 2018

Keywords

Comments

If also the reciprocal of G(1) = 1 is added we get .7194958582743401212231...

Examples

			-.28050414170674716801892095479922438557021976395598927505615374848326107452...
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(h) local a,x,k,n; a:=[seq(factorial(n)*coeff(series(2*x/(1+exp(x)),x=0,h+1),x,n),n=1..h)]; print(evalf(add(1/a[2*k],k=1..trunc(h/2)),200)); end: P(300);

Formula

Equals Sum_{k>0} 1/A036968(2*k).

A130653 Odd terms in A002430 = numerators in Taylor series for tan(x).

Original entry on oeis.org

1, 1, 17, 929569, 129848163681107301953, 7724760729208487305545342963324697288405380586579904269441, 357302767470032900576643605538835088084055212588960920085261795996340330997333306469144562500392344758421560010463942134842407723273904635849262137252097
Offset: 1

Views

Author

Alexander Adamchuk, Jun 20 2007

Keywords

Comments

Odd terms in A002430(n) correspond to the indices that are the powers of 2.

Examples

			tan(x) = x + 2 x^3/3! + 16 x^5/5! + 272 x^7/7! + ... = 1*x + 1/3*x^3 + 2/15*x^5 + 17/315*x^7 + 62/2835*x^9 + O(x^10).
A002430(n) begins {1, 1, 2, 17, 62, 1382, 21844, 929569, 6404582, 443861162, 18888466084, 113927491862, 58870668456604, 8374643517010684, 689005380505609448, 129848163681107301953, ...}.
Thus a(1) = 1, a(2) = 1, a(3) = 17, a(4) = 929569, a(5) = 129848163681107301953.
		

Crossrefs

Cf. A002430 = Numerators in Taylor series for tan(x). Also from Taylor series for tanh(x). Cf. A001469, A002425, A046990, A089171, A110501, A036968.

Programs

  • Mathematica
    Table[ Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ], {n,1,8} ]

Formula

a(n) = Numerator[ Abs[ 2^(2^n)(2^(2^n)-1)/(2^n)! * BernoulliB[ 2^n ] ] ]. a(n) = A002430(2^(n-1)).
Previous Showing 21-30 of 32 results. Next