cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 118 results. Next

A126169 Smaller member of an infinitary amicable pair.

Original entry on oeis.org

114, 594, 1140, 4320, 5940, 8640, 10744, 12285, 13500, 25728, 35712, 44772, 60858, 62100, 67095, 67158, 74784, 79296, 79650, 79750, 86400, 92960, 118500, 118944, 142310, 143808, 177750, 185368, 204512, 215712, 298188, 308220, 356408, 377784, 420640, 462330
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(5)=5940 because the fifth infinitary amicable pair is (5940,8460) and 5940 is its smallest member
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[First[data4[[k]]], {k, 1, Length[data4]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k > n && infs[k] == n, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of m for which isigma(m)=isigma(n)=m+n and m

Extensions

a(33)-a(36) from Amiram Eldar, Jan 22 2019

A126170 Larger member of an infinitary amicable pair.

Original entry on oeis.org

126, 846, 1260, 7920, 8460, 11760, 10856, 14595, 17700, 43632, 45888, 49308, 83142, 62700, 71145, 73962, 96576, 83904, 107550, 88730, 178800, 112672, 131100, 125856, 168730, 149952, 196650, 203432, 206752, 224928, 306612, 365700, 399592, 419256, 460640, 548550
Offset: 1

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(5)=8460 because the fifth infinitary amicable pair is (5940,8460) and 8460 is its largest member.
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[Last[data4[[k]]], {k, 1, Length[data4]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k > n && infs[k] == n, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of n for which isigma(m)=isigma(n)=m+n and n>m.

Extensions

a(33)-a(36) from Amiram Eldar, Jan 22 2019

A162643 Numbers whose number of divisors is not a power of 2.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 32, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 96, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 160, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198
Offset: 1

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

A number m is a term if and only if it has at least one non-infinitary divisor, or A000005(m) > A037445(m). - Vladimir Shevelev, Feb 23 2017
The asymptotic density of this sequence is 1 - A327839 = 0.3121728605... - Amiram Eldar, Jul 28 2020

Crossrefs

Complement of A036537.
A072587 is a subsequence.

Programs

  • Haskell
    a162643 n = a162643_list !! (n-1)
    a162643_list = filter ((== 0) . a209229 . a000005) [1..]
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Mathematica
    Select[Range@ 192, ! IntegerQ@ Log2@ DivisorSigma[0, #] &] (* Michael De Vlieger, Feb 24 2017 *)
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A162643_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:any(map(lambda m:((k:=m+1)&-k)^k,factorint(n).values())),count(max(startvalue,1)))
    A162643_list = list(islice(A162643_gen(),30)) # Chai Wah Wu, Jan 04 2023

Formula

A209229(A000005(a(n))) = 0. - Reinhard Zumkeller, Nov 15 2012

A063947 Infinitary harmonic numbers: harmonic mean of infinitary divisors is an integer.

Original entry on oeis.org

1, 6, 45, 60, 90, 270, 420, 630, 2970, 5460, 8190, 9100, 15925, 27300, 36720, 40950, 46494, 54600, 81900, 95550, 136500, 163800, 172900, 204750, 232470, 245700, 257040, 409500, 464940, 491400, 646425, 716625, 790398, 791700, 819000, 900900
Offset: 1

Author

Wouter Meeussen, Sep 03 2001

Keywords

Crossrefs

Programs

  • Haskell
    import Data.Ratio (denominator)
    import Data.List (genericLength)
    a063947 n = a063947_list !! (n-1)
    a063947_list = filter ((== 1) . denominator . hm . a077609_row) [1..]
       where hm xs = genericLength xs / sum (map (recip . fromIntegral) xs)
    -- Reinhard Zumkeller, Jul 10 2013
  • Mathematica
    bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence @@ ({0, #} & /@ Union[ (2^Range[ 0, Floor[ Log[ 2, k ] ] ] ) Reverse[ IntegerDigits[ k, 2 ] ] ] ) ] ] ]; 1 + Flatten[ Position[ Table[ (Length[ # ] /(Plus @@ (1/#)) &)@ (Apply[ Times, (First[ it ] ^ (# /. z -> List)) ] & /@ Flatten[ Outer[ z, Sequence @@ (bitty /@ Last[ it = Transpose[ FactorInteger[ k ] ] ] ), 1 ] ]), {k, 2, 2^22 + 1} ], Integer ] ] (* _Robert G. Wilson v, Sep 04 2001 *)

Extensions

More terms from David W. Wilson, Sep 04 2001

A212171 Prime signature of n (nonincreasing version): row n of table lists positive exponents in canonical prime factorization of n, in nonincreasing order.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1
Offset: 2

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A001221(n).
The multiset of positive exponents in n's prime factorization completely determines a(n) for a host of OEIS sequences, including several "core" sequences. Of those not cross-referenced here or in A212172, many can be found by searching the database for A025487.
(Note: Differing opinions may exist about whether the prime signature of n should be defined as this multiset itself, or as a symbol or collection of symbols that identify or "signify" this multiset. The definition of this sequence is designed to be compatible with either view, as are the original comments. When n >= 2, the customary ways to signify the multiset of exponents in n's prime factorization are to list the constituent exponents in either nonincreasing or nondecreasing order; this table gives the nonincreasing version.)
Table lists exponents in the order in which they appear in the prime factorization of a member of A025487. This ordering is common in database comments (e.g., A008966).
Each possible multiset of an integer's positive prime factorization exponents corresponds to a unique partition that contains the same elements (cf. A000041). This includes the multiset of 1's positive exponents, { } (the empty multiset), which corresponds to the partition of 0.
Differs from A124010 from a(23) on, corresponding to the factorization of 18 = 2^1*3^2 which is here listed as row 18 = [2, 1], but as [1, 2] (in the order of the prime factors) in A124010 and also in A118914 which lists the prime signatures in nondecreasing order (so that row 12 = 2^2*3^1 is also [1, 2]). - M. F. Hasler, Apr 08 2022

Examples

			First rows of table read:
  1;
  1;
  2;
  1;
  1,1;
  1;
  3;
  2;
  1,1;
  1;
  2,1;
  ...
The multiset of positive exponents in the prime factorization of 6 = 2*3 is {1,1} (1s are often left implicit as exponents). The prime signature of 6 is therefore {1,1}.
12 = 2^2*3 has positive exponents 2 and 1 in its prime factorization, as does 18 = 2*3^2. Rows 12 and 18 of the table both read {2,1}.
		

Crossrefs

Cf. A025487, A001221 (row lengths), A001222 (row sums). A118914 gives the nondecreasing version. A124010 lists exponents in n's prime factorization in natural order, with A124010(1) = 0.
A212172 cross-references over 20 sequences that depend solely on n's prime exponents >= 2, including the "core" sequence A000688. Other sequences determined by the exponents in the prime factorization of n include:
Additive: A001221, A001222, A056169.
A highly incomplete selection of sequences, each definable by the set of prime signatures possessed by its members: A000040, A000290, A000578, A000583, A000961, A001248, A001358, A001597, A001694, A002808, A004709, A005117, A006881, A013929, A030059, A030229, A052486.

Programs

  • Magma
    &cat[Reverse(Sort([pe[2]:pe in Factorisation(n)])):n in[1..76]]; // Jason Kimberley, Jun 13 2012
    
  • PARI
    apply( {A212171_row(n)=vecsort(factor(n)[,2]~,,4)}, [1..40])\\ M. F. Hasler, Apr 19 2022

Formula

Row n of A118914, reversed.
Row n of A124010 for n > 1, with exponents sorted in nonincreasing order. Equivalently, row A046523(n) of A124010 for n > 1.

A317934 Multiplicative with a(p^n) = 2^A011371(n); denominators for certain "Dirichlet Square Roots" sequences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

a(n) is the denominator of certain rational valued sequences f(n), that have been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, dA034444 and A037445.
Many of the same observations as given in A046644 apply also here. Note that A011371 shares with A005187 the property that A011371(x+y) <= A011371(x) + A011371(y), with equivalence attained only when A004198(x,y) = 0, and also the property that A011371(2^(k+1)) = 1 + 2*A011371(2^k).
The following list gives such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
Expansion of Dirichlet g.f. Product_{prime} 1/(1 - 2/p^s)^(1/2) is A046643/A317934. - Vaclav Kotesovec, May 08 2025

Crossrefs

Cf. A317933, A317940, A317941 (numerator-sequences).
Cf. also A046644, A299150, A299152, A317832, A317932, A317926 (for denominator sequences of other similar constructions).

Programs

  • PARI
    A011371(n) = (n - hammingweight(n));
    A317934(n) = factorback(apply(e -> 2^A011371(e),factor(n)[,2]));
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 07 2025
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = 2^A317946(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d 1, where b is A034444, A037445 or A046644 for example.
Sum_{k=1..n} A046643(k)/a(k) ~ n * sqrt(A167864*log(n)/(Pi*log(2))) * (1 + (4*(gamma - 1) + 5*log(2) - 4*A347195)/(8*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 08 2025

A318465 The number of Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the Zeckendorf expansion (A014417) of each s(i) contains only terms that are in the Zeckendorf expansion of r(i).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with Zeckendorf expansion instead of binary expansion. - Amiram Eldar, Jan 09 2020

Examples

			a(16) = 4 since 16 = 2^4 and the Zeckendorf expansion of 4 is 101, i.e., its Zeckendorf representation is a set with 2 terms: {1, 3}. There are 4 possible exponents of 2: 0, 1, 3 and 4, corresponding to the subsets {}, {1}, {3} and {1, 3}. Thus 16 has 4 Zeckendorf-infinitary divisors: 2^0 = 1, 2^1 = 2, 2^3 = 8, and 2^4 = 16.
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := 2^Length@fb[e]; a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n])); Array[a, 100] (* Amiram Eldar, Jan 09 2020 after Robert G. Wilson v at A014417 *)
  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A318465(n) = factorback(apply(e -> 2^A007895(e),factor(n)[,2]));

Formula

Multiplicative with a(p^e) = 2^A007895(e), where A007895(n) gives the number of terms in the Zeckendorf representation of n.
a(n) = 2^A318464(n).

Extensions

Name edited and interpretation in terms of divisors added by Amiram Eldar, Jan 09 2020

A343819 Numbers k such that k and k+1 have the same number of Fermi-Dirac factors (A064547).

Original entry on oeis.org

2, 3, 4, 14, 16, 20, 21, 26, 27, 32, 33, 34, 35, 38, 44, 45, 50, 51, 57, 62, 63, 64, 68, 74, 75, 76, 85, 86, 91, 92, 93, 94, 98, 99, 104, 111, 115, 116, 117, 118, 122, 123, 124, 133, 135, 141, 142, 143, 144, 145, 146, 147, 158, 161, 171, 175, 176, 177, 187, 189
Offset: 1

Author

Amiram Eldar, Apr 30 2021

Keywords

Comments

Since the number of infinitary divisors of k is A037445(k) = 2^A064547(k), this is also the sequence of numbers k such that k and k+1 have the same number of infinitary divisors.

Examples

			2 is a term since A064547(2) = A064547(3) = 1.
		

Crossrefs

Similar sequences: A005237, A006049.
Subsequence of A086263.

Programs

  • Mathematica
    fd[1] = 0; fd[n_] := Plus @@ DigitCount[FactorInteger[n][[;;,2]], 2, 1]; Select[Range[200], fd[#] == fd[# + 1] &]

A348341 a(n) is the number of noninfinitary divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 3, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0
Offset: 1

Author

Amiram Eldar, Oct 13 2021

Keywords

Examples

			a(4) = 1 since 4 has one noninfinitary divisor, 2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; Array[a, 100]
  • PARI
    A348341(n) = (numdiv(n)-factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2]))); \\ Antti Karttunen, Oct 13 2021

Formula

a(n) = A000005(n) - A037445(n).
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = (1 - 2 * A327576) = 0.266749... . - Amiram Eldar, Dec 09 2022

A307848 The number of exponential infinitary divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1

Author

Amiram Eldar, May 01 2019

Keywords

Comments

The exponential infinitary divisors of Product p(i)^r(i) are all the numbers of the form Product p(i)^s(i) where s(i) if an infinitary divisor of r(i) for all i.
Differs from A278908 at n = 256, 768, 1280, 1792, 2304, 2816, ...
Differs from A323308 at n = 64, 192, 256, 320, 448, 576, 704, ...

Crossrefs

Programs

  • Mathematica
    di[1] = 1; di[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; fun[p_,e_] := di[e]; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* after Jean-François Alcover at A037445 *)

Formula

Multiplicative with a(p^e) = A037445(e).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.5482125828..., where d(k) = A037445(k). - Amiram Eldar, Nov 08 2020
Previous Showing 31-40 of 118 results. Next