A126169 Smaller member of an infinitary amicable pair.
114, 594, 1140, 4320, 5940, 8640, 10744, 12285, 13500, 25728, 35712, 44772, 60858, 62100, 67095, 67158, 74784, 79296, 79650, 79750, 86400, 92960, 118500, 118944, 142310, 143808, 177750, 185368, 204512, 215712, 298188, 308220, 356408, 377784, 420640, 462330
Offset: 1
Keywords
Examples
a(5)=5940 because the fifth infinitary amicable pair is (5940,8460) and 5940 is its smallest member
Links
- Amiram Eldar, Table of n, a(n) for n = 1..7916
- Jan Munch Pedersen, Tables of Aliquot Cycles.
Programs
-
Mathematica
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[First[data4[[k]]], {k, 1, Length[data4]}] fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k > n && infs[k] == n, AppendTo[s, n]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)
Formula
The values of m for which isigma(m)=isigma(n)=m+n and m
Extensions
a(33)-a(36) from Amiram Eldar, Jan 22 2019
A126170 Larger member of an infinitary amicable pair.
126, 846, 1260, 7920, 8460, 11760, 10856, 14595, 17700, 43632, 45888, 49308, 83142, 62700, 71145, 73962, 96576, 83904, 107550, 88730, 178800, 112672, 131100, 125856, 168730, 149952, 196650, 203432, 206752, 224928, 306612, 365700, 399592, 419256, 460640, 548550
Offset: 1
Keywords
Comments
A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
Examples
a(5)=8460 because the fifth infinitary amicable pair is (5940,8460) and 8460 is its largest member.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..7916
- Jan Munch Pedersen, Tables of Aliquot Cycles.
Programs
-
Mathematica
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[Last[data4[[k]]], {k, 1, Length[data4]}] fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n]; If[k > n && infs[k] == n, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)
Formula
The values of n for which isigma(m)=isigma(n)=m+n and n>m.
Extensions
a(33)-a(36) from Amiram Eldar, Jan 22 2019
A162643 Numbers whose number of divisors is not a power of 2.
4, 9, 12, 16, 18, 20, 25, 28, 32, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 96, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 160, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198
Offset: 1
Keywords
Comments
A number m is a term if and only if it has at least one non-infinitary divisor, or A000005(m) > A037445(m). - Vladimir Shevelev, Feb 23 2017
The asymptotic density of this sequence is 1 - A327839 = 0.3121728605... - Amiram Eldar, Jul 28 2020
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a162643 n = a162643_list !! (n-1) a162643_list = filter ((== 0) . a209229 . a000005) [1..] -- Reinhard Zumkeller, Nov 15 2012
-
Mathematica
Select[Range@ 192, ! IntegerQ@ Log2@ DivisorSigma[0, #] &] (* Michael De Vlieger, Feb 24 2017 *)
-
Python
from itertools import count, islice from sympy import factorint def A162643_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:any(map(lambda m:((k:=m+1)&-k)^k,factorint(n).values())),count(max(startvalue,1))) A162643_list = list(islice(A162643_gen(),30)) # Chai Wah Wu, Jan 04 2023
Formula
A063947 Infinitary harmonic numbers: harmonic mean of infinitary divisors is an integer.
1, 6, 45, 60, 90, 270, 420, 630, 2970, 5460, 8190, 9100, 15925, 27300, 36720, 40950, 46494, 54600, 81900, 95550, 136500, 163800, 172900, 204750, 232470, 245700, 257040, 409500, 464940, 491400, 646425, 716625, 790398, 791700, 819000, 900900
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..239 (terms below 10^10)
- P. Hagis, Jr. and G. L. Cohen, Infinitary harmonic numbers, Bull. Australian math. Soc., 41 (1990), 151-158 (Math. Rev. 91d:11001) (asymptotics).
- Eric Weisstein's World of Mathematics, Harmonic Mean
- Wikipedia, Harmonic mean
Programs
-
Haskell
import Data.Ratio (denominator) import Data.List (genericLength) a063947 n = a063947_list !! (n-1) a063947_list = filter ((== 1) . denominator . hm . a077609_row) [1..] where hm xs = genericLength xs / sum (map (recip . fromIntegral) xs) -- Reinhard Zumkeller, Jul 10 2013
-
Mathematica
bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence @@ ({0, #} & /@ Union[ (2^Range[ 0, Floor[ Log[ 2, k ] ] ] ) Reverse[ IntegerDigits[ k, 2 ] ] ] ) ] ] ]; 1 + Flatten[ Position[ Table[ (Length[ # ] /(Plus @@ (1/#)) &)@ (Apply[ Times, (First[ it ] ^ (# /. z -> List)) ] & /@ Flatten[ Outer[ z, Sequence @@ (bitty /@ Last[ it = Transpose[ FactorInteger[ k ] ] ] ), 1 ] ]), {k, 2, 2^22 + 1} ], Integer ] ] (* _Robert G. Wilson v, Sep 04 2001 *)
Extensions
More terms from David W. Wilson, Sep 04 2001
A212171 Prime signature of n (nonincreasing version): row n of table lists positive exponents in canonical prime factorization of n, in nonincreasing order.
1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 1
Offset: 2
Comments
Length of row n equals A001221(n).
The multiset of positive exponents in n's prime factorization completely determines a(n) for a host of OEIS sequences, including several "core" sequences. Of those not cross-referenced here or in A212172, many can be found by searching the database for A025487.
(Note: Differing opinions may exist about whether the prime signature of n should be defined as this multiset itself, or as a symbol or collection of symbols that identify or "signify" this multiset. The definition of this sequence is designed to be compatible with either view, as are the original comments. When n >= 2, the customary ways to signify the multiset of exponents in n's prime factorization are to list the constituent exponents in either nonincreasing or nondecreasing order; this table gives the nonincreasing version.)
Table lists exponents in the order in which they appear in the prime factorization of a member of A025487. This ordering is common in database comments (e.g., A008966).
Each possible multiset of an integer's positive prime factorization exponents corresponds to a unique partition that contains the same elements (cf. A000041). This includes the multiset of 1's positive exponents, { } (the empty multiset), which corresponds to the partition of 0.
Differs from A124010 from a(23) on, corresponding to the factorization of 18 = 2^1*3^2 which is here listed as row 18 = [2, 1], but as [1, 2] (in the order of the prime factors) in A124010 and also in A118914 which lists the prime signatures in nondecreasing order (so that row 12 = 2^2*3^1 is also [1, 2]). - M. F. Hasler, Apr 08 2022
Examples
First rows of table read: 1; 1; 2; 1; 1,1; 1; 3; 2; 1,1; 1; 2,1; ... The multiset of positive exponents in the prime factorization of 6 = 2*3 is {1,1} (1s are often left implicit as exponents). The prime signature of 6 is therefore {1,1}. 12 = 2^2*3 has positive exponents 2 and 1 in its prime factorization, as does 18 = 2*3^2. Rows 12 and 18 of the table both read {2,1}.
Links
- Jason Kimberley, Table of i, a(i) for i = 2..24301 (n = 2..10000)
Crossrefs
Cf. A025487, A001221 (row lengths), A001222 (row sums). A118914 gives the nondecreasing version. A124010 lists exponents in n's prime factorization in natural order, with A124010(1) = 0.
A212172 cross-references over 20 sequences that depend solely on n's prime exponents >= 2, including the "core" sequence A000688. Other sequences determined by the exponents in the prime factorization of n include:
Programs
-
Magma
&cat[Reverse(Sort([pe[2]:pe in Factorisation(n)])):n in[1..76]]; // Jason Kimberley, Jun 13 2012
-
PARI
apply( {A212171_row(n)=vecsort(factor(n)[,2]~,,4)}, [1..40])\\ M. F. Hasler, Apr 19 2022
A317934 Multiplicative with a(p^n) = 2^A011371(n); denominators for certain "Dirichlet Square Roots" sequences.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1
Comments
a(n) is the denominator of certain rational valued sequences f(n), that have been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, dA034444 and A037445.
Many of the same observations as given in A046644 apply also here. Note that A011371 shares with A005187 the property that A011371(x+y) <= A011371(x) + A011371(y), with equivalence attained only when A004198(x,y) = 0, and also the property that A011371(2^(k+1)) = 1 + 2*A011371(2^k).
The following list gives such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
Expansion of Dirichlet g.f. Product_{prime} 1/(1 - 2/p^s)^(1/2) is A046643/A317934. - Vaclav Kotesovec, May 08 2025
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- Vaclav Kotesovec, Graph - the asymptotic ratio (1000000 terms)
- Wikipedia, Dirichlet convolution
Crossrefs
Programs
-
PARI
A011371(n) = (n - hammingweight(n)); A317934(n) = factorback(apply(e -> 2^A011371(e),factor(n)[,2]));
-
PARI
for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 07 2025
-
PARI
for(n=1, 100, print1(denominator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025
Formula
a(n) = 2^A317946(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d 1, where b is A034444, A037445 or A046644 for example.
Sum_{k=1..n} A046643(k)/a(k) ~ n * sqrt(A167864*log(n)/(Pi*log(2))) * (1 + (4*(gamma - 1) + 5*log(2) - 4*A347195)/(8*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 08 2025
A318465 The number of Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the Zeckendorf expansion (A014417) of each s(i) contains only terms that are in the Zeckendorf expansion of r(i).
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1
Comments
Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with Zeckendorf expansion instead of binary expansion. - Amiram Eldar, Jan 09 2020
Examples
a(16) = 4 since 16 = 2^4 and the Zeckendorf expansion of 4 is 101, i.e., its Zeckendorf representation is a set with 2 terms: {1, 3}. There are 4 possible exponents of 2: 0, 1, 3 and 4, corresponding to the subsets {}, {1}, {3} and {1, 3}. Thus 16 has 4 Zeckendorf-infinitary divisors: 2^0 = 1, 2^1 = 2, 2^3 = 8, and 2^4 = 16.
Links
Crossrefs
Programs
-
Mathematica
fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := 2^Length@fb[e]; a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n])); Array[a, 100] (* Amiram Eldar, Jan 09 2020 after Robert G. Wilson v at A014417 *)
-
PARI
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649 A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); } A318465(n) = factorback(apply(e -> 2^A007895(e),factor(n)[,2]));
Formula
Extensions
Name edited and interpretation in terms of divisors added by Amiram Eldar, Jan 09 2020
A343819 Numbers k such that k and k+1 have the same number of Fermi-Dirac factors (A064547).
2, 3, 4, 14, 16, 20, 21, 26, 27, 32, 33, 34, 35, 38, 44, 45, 50, 51, 57, 62, 63, 64, 68, 74, 75, 76, 85, 86, 91, 92, 93, 94, 98, 99, 104, 111, 115, 116, 117, 118, 122, 123, 124, 133, 135, 141, 142, 143, 144, 145, 146, 147, 158, 161, 171, 175, 176, 177, 187, 189
Offset: 1
Keywords
Comments
Examples
2 is a term since A064547(2) = A064547(3) = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
fd[1] = 0; fd[n_] := Plus @@ DigitCount[FactorInteger[n][[;;,2]], 2, 1]; Select[Range[200], fd[#] == fd[# + 1] &]
A348341 a(n) is the number of noninfinitary divisors of n.
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 3, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0
Offset: 1
Keywords
Examples
a(4) = 1 since 4 has one noninfinitary divisor, 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Infinitary Divisor.
Crossrefs
Programs
-
Mathematica
a[1] = 0; a[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; Array[a, 100]
-
PARI
A348341(n) = (numdiv(n)-factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2]))); \\ Antti Karttunen, Oct 13 2021
Formula
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = (1 - 2 * A327576) = 0.266749... . - Amiram Eldar, Dec 09 2022
A307848 The number of exponential infinitary divisors of n.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1
Comments
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Andrew V. Lelechenko, Exponential and infinitary divisors, Ukrainian Mathematical Journal, Vol. 68, No. 8 (2017), pp. 1222-1237; arXiv preprint, arXiv:1405.7597 [math.NT] (2014).
Programs
-
Mathematica
di[1] = 1; di[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]& /@ FactorInteger[n][[All, 2]] ]; fun[p_,e_] := di[e]; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); Array[a, 100] (* after Jean-François Alcover at A037445 *)
Formula
Multiplicative with a(p^e) = A037445(e).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (d(k) - d(k-1))/p^k) = 1.5482125828..., where d(k) = A037445(k). - Amiram Eldar, Nov 08 2020
Comments