cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A357479 a(n) = (n!/6) * Sum_{k=0..n-3} 1/k!.

Original entry on oeis.org

0, 0, 0, 1, 8, 50, 320, 2275, 18256, 164388, 1644000, 18084165, 217010200, 2821132886, 39495860768, 592437911975, 9479006592160, 161143112067400, 2900576017214016, 55110944327067273, 1102218886541346600, 23146596617368279930, 509225125582102160000
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2022

Keywords

Crossrefs

Column k=3 of A073107.

Programs

  • Mathematica
    Table[n!/6 Sum[1/k!,{k,0,n-3}],{n,0,30}] (* Harvey P. Dale, Apr 02 2023 *)
  • PARI
    a(n) = n!/6*sum(k=0, n-3, 1/k!);
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(k, 3)/k!);
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(x^3/6*exp(x)/(1-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=3, N, k!*x^k/(1-x)^(k+1))/6))

Formula

a(n) = n! * Sum_{k=0..n} binomial(k,3)/k!.
a(0) = 0; a(n) = n * a(n-1) + binomial(n,3).
E.g.f.: x^3/6 * exp(x)/(1-x).
G.f.: (1/6) * Sum_{k>=3} k! * x^k/(1-x)^(k+1).

A357480 a(n) = (n!/24) * Sum_{k=0..n-4} 1/k!.

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 75, 560, 4550, 41076, 410970, 4521000, 54252495, 705283150, 9873965101, 148109477880, 2369751647900, 40285778016680, 725144004303300, 13777736081766576, 275554721635336365, 5786649154342069650, 127306281395525539615, 2928044472097087420000
Offset: 0

Views

Author

Seiichi Manyama, Sep 30 2022

Keywords

Crossrefs

Column k=4 of A073107.

Programs

  • PARI
    a(n) = n!/24*sum(k=0, n-4, 1/k!);
    
  • PARI
    a(n) = n!*sum(k=0, n, binomial(k, 4)/k!);
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(x^4/24*exp(x)/(1-x))))
    
  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=4, N, k!*x^k/(1-x)^(k+1))/24))

Formula

a(n) = n! * Sum_{k=0..n} binomial(k,4)/k!.
a(0) = 0; a(n) = n * a(n-1) + binomial(n,4).
E.g.f.: x^4/24 * exp(x)/(1-x).
G.f.: (1/24) * Sum_{k>=4} k! * x^k/(1-x)^(k+1).

A266083 a(n) = Sum_{k = 0..n - 1} (a(n - 1) + k) for n>0, a(0) = 1.

Original entry on oeis.org

1, 1, 3, 12, 54, 280, 1695, 11886, 95116, 856080, 8560845, 94169350, 1130032266, 14690419536, 205665873595, 3084988104030, 49359809664600, 839116764298336, 15104101757370201, 286977933390033990, 5739558667800679990, 120530732023814280000, 2651676104523914160231
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Examples

			a(0) = 1;
a(1) = 1 + 0 = 1;
a(2) = 1 + 0 + 1 + 1 = 3;
a(3) = 3 + 0 + 3 + 1 + 3 + 2 = 12;
a(4) = 12 + 0 + 12 + 1 + 12 + 2 + 12 + 3 = 54;
a(5) = 54 + 0 + 54 + 1 + 54 + 2 + 54 + 3 + 54 + 4 = 280, etc.
		

Crossrefs

Cf. A000217, A038155 (for a(0) = 0).

Programs

  • Mathematica
    Table[(2 n! + Exp[1] n (n - 1) Gamma[n - 1, 1])/2, {n, 0, 22}]
    RecurrenceTable[{a[n] == n*a[n - 1] + Binomial[n, 2], a[0] == 1}, a, {n, 0, 20}] (* G. C. Greubel, Dec 22 2015 *)
  • PARI
    a(n) = (2*n! + exp(1)*n*(n-1)*incgam(n-1, 1))\/2

Formula

a(n) = (2*n! + exp(1)*n*(n - 1)*Gamma(n - 1, 1))/2, where Gamma(a, x) is the incomplete gamma function.
a(n + 1) - a(n)*(n + 1) = A000217(n).
a(n) = n*a(n-1) + binomial(n,2). - G. C. Greubel, Dec 22 2015

A360877 Array read by antidiagonals: T(m,n) is the number of (undirected) paths in the rook graph K_m X K_n.

Original entry on oeis.org

0, 1, 1, 6, 12, 6, 30, 129, 129, 30, 160, 1984, 4536, 1984, 160, 975, 45945, 310542, 310542, 45945, 975, 6846, 1524156, 38298270, 111933456, 38298270, 1524156, 6846
Offset: 1

Views

Author

Andrew Howroyd, Feb 25 2023

Keywords

Examples

			Array begins:
==============================================
m\n|   1     2        3         4        5 ...
---+------------------------------------------
1  |   0     1        6        30      160 ...
2  |   1    12      129      1984    45945 ...
3  |   6   129     4536    310542 38298270 ...
4  |  30  1984   310542 111933456 ...
5  | 160 45945 38298270 ...
  ...
		

Crossrefs

Main diagonal is A288967.
Rows 1..2 are A038155, A360878.

A365617 Iterated Pochhammer symbol.

Original entry on oeis.org

1, 1, 2, 24, 421200, 13257209623458438290962108800
Offset: 0

Views

Author

DarĂ­o Clavijo, Sep 12 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0,
          (z-> mul(z+j, j=0..n-1))(a(n-1)))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Sep 12 2023
  • Mathematica
    FoldList[Pochhammer, 1, Range[5]] (* Amiram Eldar, Sep 12 2023 *)
  • PARI
    P(x, y) = my(P=1); for (i=0, y-1, P *= x+i); P;
    a(n) = my(x=1); n--; for (i=1, n, x = P(x, i+1)); x; \\ Michel Marcus, Sep 13 2023
  • Python
    from gmpy2 import *
    from functools import reduce
    gamma = lambda n: fac(n - 1)
    Pochhammer = lambda z,n: gamma(n + z) // gamma(z)
    list_Pochhammer = lambda lst: int(reduce((lambda x, y: Pochhammer(x, y)), lst)) if len(lst) > 0 else 1
    print([list_Pochhammer(range(1, n + 1)) for n in range(0, 6)])
    
  • Python
    from functools import reduce
    from sympy import rf
    def A365617(n): return reduce(rf,range(1,n+1),1) # Chai Wah Wu, Sep 15 2023
    

Formula

a(n) = Pochhammer(...(Pochhammer(Pochhammer(1, 2), 3), ...), n).
a(n) = gamma(n + a(n-1)) / gamma(a(n-1)).
a(n) = Product_{j=0..n-1} (j + a(n-1)), a(0) = 1. - Alois P. Heinz, Sep 12 2023
Previous Showing 11-15 of 15 results.