cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A379317 Positive integers with a unique even prime index.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   3: {2}
   6: {1,2}
   7: {4}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  19: {8}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  37: {12}
  38: {1,8}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A038348 (strict A096911).
For all even parts we have A066207, counted by A035363 (strict A000700).
For no even parts we have A066208, counted by A000009 (strict A035457).
Positions of 1 in A257992.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]

A116482 Triangle read by rows: T(n,k) is the number of partitions of n having k even parts (n>=0, 0<=k<=floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 3, 1, 4, 4, 2, 1, 5, 6, 3, 1, 6, 8, 5, 2, 1, 8, 11, 7, 3, 1, 10, 14, 10, 5, 2, 1, 12, 19, 14, 7, 3, 1, 15, 24, 19, 11, 5, 2, 1, 18, 31, 26, 15, 7, 3, 1, 22, 39, 34, 21, 11, 5, 2, 1, 27, 49, 45, 29, 15, 7, 3, 1, 32, 61, 58, 39, 22, 11, 5, 2, 1, 38, 76, 75, 52, 30
Offset: 0

Views

Author

Emeric Deutsch, Feb 17 2006

Keywords

Comments

Row n has 1 + floor(n/2) terms. Row sums are the partition numbers (A000041).
Column 0 yields A000009. Column 1 yields A038348. Column 2 yields A096778.
Sum_{k=0..floor(n/2)}k*T(n,k) = A066898(n).
From Gregory L. Simay, Nov 02 2015: (Start)
If n<=2k+1, T(n+2k,k) = A000041(n), the number of partitions of n.
T(n+2k,k) = the convolution of A000009(n-2j),which are the strict partitions of (n-2j), and p(j+k,k), which are the number of partitions of j+k having exactly k parts.
T(n+2k,k) = e(n,k) where e(n,0)= A000009(n) and e(n,k) = e(n,k-1) + e(n-2k,k-1) + e(n-4k,k-1) + ... .(End)

Examples

			T(7,2) = 3 because we have [4,2,1], [3,2,2] and [2,2,1,1,1].
Triangle starts:
   1;
   1;
   1,  1;
   2,  1;
   2,  2,  1;
   3,  3,  1;
   4,  4,  2,  1;
   5,  6,  3,  1;
   6,  8,  5,  2,  1;
   8, 11,  7,  3,  1;
  10, 14, 10,  5,  2, 1;
  12, 19, 14,  7,  3, 1;
  15, 24, 19, 11,  5, 2, 1;
  18, 31, 26, 15,  7, 3, 1;
  22, 39, 34, 21, 11, 5, 2, 1;
  27, 49, 45, 29, 15, 7, 3, 1;
Added entries for n=8 through n=15. - _Gregory L. Simay_, Nov 03 2015
From _Gregory L. Simay_, Nov 03 2015: (Start)
T(15,4) = T(7+2*4,4) = p(7) = 15, since 7 < 2*4 + 1.
T(15,3) = T(13,2) + T(9,3) = 26 + 3 = 29.
T(10,1) = T(8+2*1,1) = T(8,0) + T(6,0) + T(4,0) + T(2,0) + T(0,0) = 6 + 4 + 2 + 1 + 1 = 14.
T(15,3) = T(9+2*3) = e(9,3) = e(9,2) + e(3,2) = (e(9,1) + e(5,1) + e(1,1)) + e(3,1) = q(9) + q(7) + q(5) + q(3) + q(1) + q(5) + q(3) + q(1) + q(1) + q(3) + q(1) = q(9) + q(7) + 2*q(5) + 3*q(3) + 4*q(1) = 8 + 5 + 2*3 + 3*2 + 4*1 = 29 = the convolution sum of q(9-2j) with p(3+j,3).
(End)
		

Crossrefs

Programs

  • Maple
    g:=1/product((1-x^(2*j-1))*(1-t*x^(2*j)),j=1..20): gser:=simplify(series(g,x=0,22)): P[0]:=1: for n from 1 to 18 do P[n]:=coeff(gser,x^n) od: for n from 0 to 18 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; local j; if n=0 then 1 elif i<1
          then 0 else []; for j from 0 to n/i do zip((x, y)->x+y, %,
          [`if`(irem(i, 2)=0, 0$j, [][]), b(n-i*j, i-1)], 0) od; %[] fi
        end:
    T:= n-> b(n, n):
    seq (T(n), n=0..30);  # Alois P. Heinz, Jan 07 2013
  • Mathematica
    nn=8;CoefficientList[Series[Product[1/(1-x^(2i-1))/(1-y x^(2i)),{i,1,nn}],{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Jan 07 2013 *)

Formula

G.f.: G(t,x) = 1/Product_{j>=1}((1-x^(2j-1))(1-tx^(2j))).
From Gregory L. Simay, Nov 03 2015: (Start)
G.f.: T(n+2k,k) = g.f.: e(n,k) = Product_{j>=1}(1-x^2*(k+j))*p(x), where p(x) is the g.f. of the partitions of x. If n<=2k+1, then the g.f. reduces to p(x).
T(n+2k,k) = T(n+2k-2,k-1) + T(n,k).
(End)

A096778 Number of partitions of n with at most two even parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 45, 58, 75, 95, 121, 151, 189, 234, 289, 354, 433, 526, 637, 768, 923, 1105, 1319, 1569, 1861, 2202, 2597, 3056, 3587, 4201, 4908, 5723, 6658, 7732, 8961, 10367, 11971, 13802, 15884, 18253, 20942, 23992, 27445, 31353
Offset: 0

Views

Author

Vladeta Jovovic, Aug 16 2004

Keywords

Comments

Also number of partitions of n+4 with exactly two even parts. Example: a(3)=3 because the partitions of 7 with exactly two even parts are [4,2,1], [3,2,2] and [2,2,1,1,1]. a(n)=A116482(n+4,2). - Emeric Deutsch, Feb 21 2006

Examples

			a(3)=3 because we have [3],[2,1] and [1,1,1].
		

References

  • Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=2. - N. J. A. Sloane, Aug 31 2014

Crossrefs

Cf. A038348.
Cf. A116482.

Programs

  • Mathematica
    CoefficientList[ Series[(1/((1 - x^2)*(1 - x^4)))/Product[1 - x^(2i + 1), {i, 0, 50}], {x, 0, 48}], x] (* Robert G. Wilson v, Aug 16 2004 *)

Formula

G.f.: (1/((1-x^2)*(1-x^4)))/Product(1-x^(2*i+1), i=0..infinity). More generally, g.f. for number of partitions of n with at most k even parts is (1/Product(1-x^(2*i), i=1..k))/Product(1-x^(2*i+1), i=0..infinity).
a(n) ~ 3^(3/4) * n^(1/4) * exp(Pi*sqrt(n/3)) / (8*Pi^2). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Robert G. Wilson v, Aug 17 2004
More terms from Emeric Deutsch, Feb 21 2006

A173305 Triangle by columns, A000009 in every column shifted down twice for k > 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 2, 1, 1, 5, 3, 2, 1, 6, 4, 2, 1, 1, 8, 5, 3, 2, 1, 10, 6, 4, 2, 1, 1, 12, 8, 5, 3, 2, 1, 15, 10, 6, 4, 2, 1, 1, 18, 12, 8, 5, 3, 2, 1, 22, 15, 10, 6, 4, 2, 1, 1, 27, 18, 12, 8, 5, 3, 2, 1, 32, 22, 15, 10, 6, 4, 2, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 15 2010

Keywords

Comments

Row sums = A038348.
Let the triangle = M. Limit_{n->oo} M^n = the partition numbers, A000041;
equivalent to the statement A000009(x) = A000041(x)/A000041(x^2), or
(1 + x + x^2 + 2x^3 + 2x^4 +3x^5 + 4x^6 + ...) = (1 + x + 2x^2 + 3x^3 + ...)/(1 + x^2 + 2x^4 + 3x^6 + 5x^8 + 7x^10 + ...).

Examples

			Triangle begins:
   1;
   1;
   1,  1;
   2,  1;
   2,  1,  1;
   3,  2,  1;
   4,  2,  1,  1;
   5,  3,  2,  1;
   6,  4,  2,  1,  1;
   8,  5,  3,  2,  1;
  10,  6,  4,  2,  1,  1;
  12,  8,  5,  3,  2,  1;
  15, 10,  6,  4,  2,  1,  1;
  18, 12,  8,  5,  3,  2,  1;
  22, 15, 10,  6,  4,  2,  1,  1;
  27, 18, 12,  8,  5,  3,  2,  1;
  32, 22, 15, 10,  6,  4,  2,  1,  1;
  38, 27, 18, 12,  8,  5,  3,  2,  1;
  46, 32, 22, 15, 10,  6,  4,  2,  1,  1;
  54, 38, 27, 18, 12,  8,  5,  3,  2,  1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsQ[n-2*k], {n, 0, 15}, {k, 0, n/2}] (* Paolo Xausa, Feb 21 2024 *)

Formula

Triangle by columns, A000009 in every column shifted down twice for k > 0.
T(n,k) = A000009(n-2*k). - Paolo Xausa, Feb 21 2024

A331852 a(n) is the number of distinct values obtained by partitioning the binary representation of n into consecutive blocks, and then applying the bitwise XOR operator to the numbers represented by the blocks.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 8, 8, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 11, 11, 9, 9, 8, 8, 7, 7, 10, 10, 10, 10, 11, 11, 10, 10, 11, 11, 11, 11, 12
Offset: 0

Views

Author

Rémy Sigrist, Jan 29 2020

Keywords

Examples

			For n = 6:
- the binary representation of 6 is "110",
- we can split it in 4 ways:
      "110" -> 6
      "1" and "10" -> 1 XOR 2 = 3
      "11" and "0" -> 3 XOR 0 = 3
      "1" and "1" and "0" -> 1 XOR 1 XOR 0 = 0
- we have 3 distinct values,
- hence a(6) = 3.
		

Crossrefs

See A331851 for similar sequences.
Cf. A038348.

Programs

  • PARI
    See Links section.

Formula

a(2^k) = k+1 for any k >= 0.
Apparently a(2^k-1) = A038348(k) for any k >= 0.

A379313 Positive integers whose prime indices are not all composite.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2024

Keywords

Comments

Or, positive integers whose prime indices include at least one 1 or prime number.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     2: {1}
     3: {2}
     4: {1,1}
     5: {3}
     6: {1,2}
     8: {1,1,1}
     9: {2,2}
    10: {1,3}
    11: {5}
    12: {1,1,2}
    14: {1,4}
    15: {2,3}
    16: {1,1,1,1}
    17: {7}
    18: {1,2,2}
    20: {1,1,3}
    21: {2,4}
    22: {1,5}
    24: {1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A000041 - A023895.
The "old" primes are listed by A008578.
For no composite parts we have A302540, counted by A034891 (strict A036497).
The complement is A320629, counted by A023895 (strict A204389).
For a unique prime we have A331915, counted by A379304 (strict A379305).
Positions of nonzeros in A379311.
For a unique 1 or prime we have A379312, counted by A379314 (strict A379315).
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526.
A377033 gives k-th differences of composite numbers, see A073445, A377034.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!And@@CompositeQ/@prix[#]&]

A246579 G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 2, -3, 5, -7, 11, -15, 21, -29, 39, -52, 69, -90, 116, -150, 190, -241, 303, -379, 470, -583, 716, -878, 1071, -1302, 1575, -1902, 2285, -2739, 3273, -3899, 4631, -5489, 6486, -7647, 8996, -10557, 12363, -14450, 16853, -19618, 22798, -26441
Offset: 0

Views

Author

N. J. A. Sloane, Aug 31 2014

Keywords

References

  • Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=3.

Crossrefs

k=0,1,2 give (apart perhaps from signs) A081360, A038348, A096778. Cf. A246590.

Programs

  • Maple
    fU:=proc(k) local a,i,r;
    a:=x^(k^2)/mul(1-x^(2*i),i=1..k);
    a:=a/mul(1+x^(2*r-1),r=1..101);
    series(a,x,101);
    seriestolist(%);
    end;
    fU(3);

A246580 G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 2, -3, 5, -7, 11, -15, 22, -30, 41, -55, 74, -97, 127, -165, 212, -271, 344, -434, 544, -680, 843, -1043, 1283, -1573, 1919, -2336, 2829, -3419, 4116, -4942, 5914, -7062, 8405, -9983, 11825, -13976, 16479, -19392, 22767
Offset: 0

Views

Author

N. J. A. Sloane, Aug 31 2014

Keywords

References

  • Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=4.

Crossrefs

k=0,1,2 give (apart perhaps from signs) A081360, A038348, A096778. Cf. A246589.

Programs

  • Maple
    fU:=proc(k) local a,i,r;
    a:=x^(k^2)/mul(1-x^(2*i),i=1..k);
    a:=a/mul(1+x^(2*r-1),r=1..101);
    series(a,x,101);
    seriestolist(%);
    end;
    fU(4);

A303904 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(k^3)).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

Partial sums of A279329.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0,
         `if`(n=0, 1, `if`(n>i^2*(i+1)^2/4, 0, (t->
           b(t, min(t, i-1)))(n-i^3)+b(n, i-1))))
        end:
    a:= proc(n) option remember; `if`(n<0, 0,
           b(n, iroot(n, 3))+a(n-1))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, May 02 2018
  • Mathematica
    nmax = 91; CoefficientList[Series[1/(1 - x) Product[1 + x^k^3, {k, 1, Floor[nmax^(1/3) + 1]}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(7/4) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * 3^(5/4) / (2^(15/8) * sqrt(Pi) * ((2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3))^(3/8) * n^(1/8)). - Vaclav Kotesovec, May 04 2018

A303905 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(k*(k+1)/2)).

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 9, 10, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22, 24, 24, 26, 29, 30, 31, 34, 36, 37, 41, 44, 44, 47, 50, 52, 56, 59, 62, 65, 67, 70, 73, 75, 79, 85, 89, 91, 96, 100, 102, 108, 113, 116, 123, 129, 132, 137, 142, 147, 153, 158, 162, 169, 176, 182, 190, 196, 201
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

Partial sums of A024940.

Crossrefs

Programs

  • Mathematica
    nmax = 69; CoefficientList[Series[1/(1 - x) Product[1 + x^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(3 * Pi^(1/3) * ((sqrt(2) - 1) * Zeta(3/2))^(2/3) * n^(1/3) / 2^(4/3)) / (2^(1/3) * (sqrt(2) - 1)^(1/3) * sqrt(3) * Pi^(2/3) * Zeta(3/2)^(1/3) * n^(1/6)). - Vaclav Kotesovec, May 04 2018
Previous Showing 21-30 of 30 results.