A379317
Positive integers with a unique even prime index.
Original entry on oeis.org
3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1
The terms together with their prime indices begin:
3: {2}
6: {1,2}
7: {4}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
19: {8}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
29: {10}
30: {1,2,3}
33: {2,5}
35: {3,4}
37: {12}
38: {1,8}
43: {14}
48: {1,1,1,1,2}
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]
A116482
Triangle read by rows: T(n,k) is the number of partitions of n having k even parts (n>=0, 0<=k<=floor(n/2)).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 2, 1, 3, 3, 1, 4, 4, 2, 1, 5, 6, 3, 1, 6, 8, 5, 2, 1, 8, 11, 7, 3, 1, 10, 14, 10, 5, 2, 1, 12, 19, 14, 7, 3, 1, 15, 24, 19, 11, 5, 2, 1, 18, 31, 26, 15, 7, 3, 1, 22, 39, 34, 21, 11, 5, 2, 1, 27, 49, 45, 29, 15, 7, 3, 1, 32, 61, 58, 39, 22, 11, 5, 2, 1, 38, 76, 75, 52, 30
Offset: 0
T(7,2) = 3 because we have [4,2,1], [3,2,2] and [2,2,1,1,1].
Triangle starts:
1;
1;
1, 1;
2, 1;
2, 2, 1;
3, 3, 1;
4, 4, 2, 1;
5, 6, 3, 1;
6, 8, 5, 2, 1;
8, 11, 7, 3, 1;
10, 14, 10, 5, 2, 1;
12, 19, 14, 7, 3, 1;
15, 24, 19, 11, 5, 2, 1;
18, 31, 26, 15, 7, 3, 1;
22, 39, 34, 21, 11, 5, 2, 1;
27, 49, 45, 29, 15, 7, 3, 1;
Added entries for n=8 through n=15. - _Gregory L. Simay_, Nov 03 2015
From _Gregory L. Simay_, Nov 03 2015: (Start)
T(15,4) = T(7+2*4,4) = p(7) = 15, since 7 < 2*4 + 1.
T(15,3) = T(13,2) + T(9,3) = 26 + 3 = 29.
T(10,1) = T(8+2*1,1) = T(8,0) + T(6,0) + T(4,0) + T(2,0) + T(0,0) = 6 + 4 + 2 + 1 + 1 = 14.
T(15,3) = T(9+2*3) = e(9,3) = e(9,2) + e(3,2) = (e(9,1) + e(5,1) + e(1,1)) + e(3,1) = q(9) + q(7) + q(5) + q(3) + q(1) + q(5) + q(3) + q(1) + q(1) + q(3) + q(1) = q(9) + q(7) + 2*q(5) + 3*q(3) + 4*q(1) = 8 + 5 + 2*3 + 3*2 + 4*1 = 29 = the convolution sum of q(9-2j) with p(3+j,3).
(End)
-
g:=1/product((1-x^(2*j-1))*(1-t*x^(2*j)),j=1..20): gser:=simplify(series(g,x=0,22)): P[0]:=1: for n from 1 to 18 do P[n]:=coeff(gser,x^n) od: for n from 0 to 18 do seq(coeff(P[n],t,j),j=0..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; local j; if n=0 then 1 elif i<1
then 0 else []; for j from 0 to n/i do zip((x, y)->x+y, %,
[`if`(irem(i, 2)=0, 0$j, [][]), b(n-i*j, i-1)], 0) od; %[] fi
end:
T:= n-> b(n, n):
seq (T(n), n=0..30); # Alois P. Heinz, Jan 07 2013
-
nn=8;CoefficientList[Series[Product[1/(1-x^(2i-1))/(1-y x^(2i)),{i,1,nn}],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Jan 07 2013 *)
A096778
Number of partitions of n with at most two even parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 14, 19, 26, 34, 45, 58, 75, 95, 121, 151, 189, 234, 289, 354, 433, 526, 637, 768, 923, 1105, 1319, 1569, 1861, 2202, 2597, 3056, 3587, 4201, 4908, 5723, 6658, 7732, 8961, 10367, 11971, 13802, 15884, 18253, 20942, 23992, 27445, 31353
Offset: 0
a(3)=3 because we have [3],[2,1] and [1,1,1].
- Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=2. - N. J. A. Sloane, Aug 31 2014
-
CoefficientList[ Series[(1/((1 - x^2)*(1 - x^4)))/Product[1 - x^(2i + 1), {i, 0, 50}], {x, 0, 48}], x] (* Robert G. Wilson v, Aug 16 2004 *)
A173305
Triangle by columns, A000009 in every column shifted down twice for k > 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 2, 1, 1, 5, 3, 2, 1, 6, 4, 2, 1, 1, 8, 5, 3, 2, 1, 10, 6, 4, 2, 1, 1, 12, 8, 5, 3, 2, 1, 15, 10, 6, 4, 2, 1, 1, 18, 12, 8, 5, 3, 2, 1, 22, 15, 10, 6, 4, 2, 1, 1, 27, 18, 12, 8, 5, 3, 2, 1, 32, 22, 15, 10, 6, 4, 2, 1, 1
Offset: 0
Triangle begins:
1;
1;
1, 1;
2, 1;
2, 1, 1;
3, 2, 1;
4, 2, 1, 1;
5, 3, 2, 1;
6, 4, 2, 1, 1;
8, 5, 3, 2, 1;
10, 6, 4, 2, 1, 1;
12, 8, 5, 3, 2, 1;
15, 10, 6, 4, 2, 1, 1;
18, 12, 8, 5, 3, 2, 1;
22, 15, 10, 6, 4, 2, 1, 1;
27, 18, 12, 8, 5, 3, 2, 1;
32, 22, 15, 10, 6, 4, 2, 1, 1;
38, 27, 18, 12, 8, 5, 3, 2, 1;
46, 32, 22, 15, 10, 6, 4, 2, 1, 1;
54, 38, 27, 18, 12, 8, 5, 3, 2, 1;
...
-
Table[PartitionsQ[n-2*k], {n, 0, 15}, {k, 0, n/2}] (* Paolo Xausa, Feb 21 2024 *)
A331852
a(n) is the number of distinct values obtained by partitioning the binary representation of n into consecutive blocks, and then applying the bitwise XOR operator to the numbers represented by the blocks.
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6, 8, 8, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 9, 9, 10, 10, 9, 9, 10, 10, 11, 11, 11, 11, 9, 9, 8, 8, 7, 7, 10, 10, 10, 10, 11, 11, 10, 10, 11, 11, 11, 11, 12
Offset: 0
For n = 6:
- the binary representation of 6 is "110",
- we can split it in 4 ways:
"110" -> 6
"1" and "10" -> 1 XOR 2 = 3
"11" and "0" -> 3 XOR 0 = 3
"1" and "1" and "0" -> 1 XOR 1 XOR 0 = 0
- we have 3 distinct values,
- hence a(6) = 3.
A379313
Positive integers whose prime indices are not all composite.
Original entry on oeis.org
2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
4: {1,1}
5: {3}
6: {1,2}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
12: {1,1,2}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
The "old" primes are listed by
A008578.
A080339 is the characteristic function for the old prime numbers.
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!And@@CompositeQ/@prix[#]&]
A246579
G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=3.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 2, -3, 5, -7, 11, -15, 21, -29, 39, -52, 69, -90, 116, -150, 190, -241, 303, -379, 470, -583, 716, -878, 1071, -1302, 1575, -1902, 2285, -2739, 3273, -3899, 4631, -5489, 6486, -7647, 8996, -10557, 12363, -14450, 16853, -19618, 22798, -26441
Offset: 0
- Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=3.
-
fU:=proc(k) local a,i,r;
a:=x^(k^2)/mul(1-x^(2*i),i=1..k);
a:=a/mul(1+x^(2*r-1),r=1..101);
series(a,x,101);
seriestolist(%);
end;
fU(3);
A246580
G.f.: x^(k^2)/(mul(1-x^(2*i),i=1..k)*mul(1+x^(2*r-1),r=1..oo)) with k=4.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 2, -3, 5, -7, 11, -15, 22, -30, 41, -55, 74, -97, 127, -165, 212, -271, 344, -434, 544, -680, 843, -1043, 1283, -1573, 1919, -2336, 2829, -3419, 4116, -4942, 5914, -7062, 8405, -9983, 11825, -13976, 16479, -19392, 22767
Offset: 0
- Fulman, Jason. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51--85. MR1864086 (2002i:60012). See top of page 70, Eq. 2, with k=4.
-
fU:=proc(k) local a,i,r;
a:=x^(k^2)/mul(1-x^(2*i),i=1..k);
a:=a/mul(1+x^(2*r-1),r=1..101);
series(a,x,101);
seriestolist(%);
end;
fU(4);
A303904
Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(k^3)).
Original entry on oeis.org
1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13
Offset: 0
-
b:= proc(n, i) option remember; `if`(n<0, 0,
`if`(n=0, 1, `if`(n>i^2*(i+1)^2/4, 0, (t->
b(t, min(t, i-1)))(n-i^3)+b(n, i-1))))
end:
a:= proc(n) option remember; `if`(n<0, 0,
b(n, iroot(n, 3))+a(n-1))
end:
seq(a(n), n=0..100); # Alois P. Heinz, May 02 2018
-
nmax = 91; CoefficientList[Series[1/(1 - x) Product[1 + x^k^3, {k, 1, Floor[nmax^(1/3) + 1]}], {x, 0, nmax}], x]
A303905
Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(k*(k+1)/2)).
Original entry on oeis.org
1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 9, 10, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22, 24, 24, 26, 29, 30, 31, 34, 36, 37, 41, 44, 44, 47, 50, 52, 56, 59, 62, 65, 67, 70, 73, 75, 79, 85, 89, 91, 96, 100, 102, 108, 113, 116, 123, 129, 132, 137, 142, 147, 153, 158, 162, 169, 176, 182, 190, 196, 201
Offset: 0
-
nmax = 69; CoefficientList[Series[1/(1 - x) Product[1 + x^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]
Comments