A094266
LQTL Lean Quaternary Temporal Logic: a terse form of temporal logic created by assigning four descriptors such that false, becoming true, true and becoming false are represented and become a linear sequence. In a branching tree two alternative are open, change or no change. The integer sequence above is the count of the row possibilities of the four states over successive iterations.
Original entry on oeis.org
1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 3, 1, 2, 4, 6, 4, 6, 6, 10, 10, 16, 12, 16, 20, 36, 28, 28, 36, 72, 64, 56, 64, 136, 136, 120, 120, 256, 272, 256, 240, 496, 528, 528, 496, 992, 1024, 1056, 1024, 2016, 2016, 2080, 2080, 4096, 4032, 4096, 4160, 8256, 8128, 8128, 8256, 16512
Offset: 0
A323100
Square array read by ascending antidiagonals: T(p,q) is the number of bases e such that e^2 = -1 in Clifford algebra Cl(p,q)(R).
Original entry on oeis.org
0, 0, 1, 1, 1, 3, 4, 2, 4, 6, 10, 6, 6, 10, 10, 20, 16, 12, 16, 20, 16, 36, 36, 28, 28, 36, 36, 28, 64, 72, 64, 56, 64, 72, 64, 56, 120, 136, 136, 120, 120, 136, 136, 120, 120, 240, 256, 272, 256, 240, 256, 272, 256, 240, 256, 496, 496, 528, 528, 496, 496, 528, 528, 496, 496, 528
Offset: 0
Table begins
p\q| 0 1 2 3 4 5 ...
---+-------------------------------
0 | 0, 1, 3, 6, 10, 16, ...
1 | 0, 1, 4, 10, 20, 36, ...
2 | 1, 2, 6, 16, 36, 72, ...
3 | 4, 6, 12, 28, 64, 136, ...
4 | 10, 16, 28, 56, 120, 256, ...
5 | 20, 36, 64, 120, 240, 496, ...
...
Example for T(1,3) = 10: (Start)
1^2 = 1;
(e_1)^2 = 1;
(e_2)^2 = -1;
(e_3)^2 = -1;
(e_4)^2 = -1;
((e_1)*(e_2))^2 = -(e_1)^2*(e_2)^2 = 1;
((e_1)*(e_3))^2 = -(e_1)^2*(e_3)^2 = 1;
((e_1)*(e_4))^2 = -(e_1)^2*(e_4)^2 = 1;
((e_2)*(e_3))^2 = -(e_2)^2*(e_3)^2 = -1;
((e_2)*(e_4))^2 = -(e_2)^2*(e_4)^2 = -1;
((e_3)*(e_4))^2 = -(e_3)^2*(e_4)^2 = -1;
((e_1)*(e_2)*(e_3))^2 = -(e_1)^2*(e_2)^2*(e_3)^2 = -1;
((e_1)*(e_2)*(e_4))^2 = -(e_1)^2*(e_2)^2*(e_4)^2 = -1;
((e_1)*(e_3)*(e_4))^2 = -(e_1)^2*(e_3)^2*(e_4)^2 = -1;
((e_2)*(e_3)*(e_4))^2 = -(e_2)^2*(e_3)^2*(e_4)^2 = 1;
((e_1)*(e_2)*(e_3)*(e_4))^2 = (e_1)^2*(e_2)^2*(e_3)^2*(e_4)^2 = -1. (End)
From _Peter Luschny_, Jan 13 2019: (Start)
The first few lines of the triangle T(i-j,j) are:
[0] 0;
[1] 0, 1;
[2] 1, 1, 3;
[3] 4, 2, 4, 6;
[4] 10, 6, 6, 10, 10;
[5] 20, 16, 12, 16, 20, 16;
[6] 36, 36, 28, 28, 36, 36, 28;
[7] 64, 72, 64, 56, 64, 72, 64, 56;
[8] 120, 136, 136, 120, 120, 136, 136, 120, 120;
[9] 240, 256, 272, 256, 240, 256, 272, 256, 240, 256; (End)
A323346 is the complement sequence.
-
s := sqrt(2): h := n -> [ 0, -s, -2, -s, 0, s, 2, s][1 + modp(n+1, 8)]:
T := proc(n, k) option remember;
if n = 0 then return 2^(k - 1) + 2^((k - 3)/2)*h(k + 2) fi;
if k = 0 then return 2^(n - 1) + 2^((n - 3)/2)*h(n) fi;
T(n, k-1 ) + T(n-1, k) end:
for n from 0 to 9 do seq(T(n, k), k=0..9) od; # Peter Luschny, Jan 12 2019
-
T[n_, k_] := Sum[Binomial[n, i] Binomial[k, j] Mod[Binomial[i - j, 2], 2], {i, 0, n}, {j, 0, k}];
Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 19 2019 *)
-
T(p,q) = sum(i=0, p, sum(j=0, q, binomial(p, i)*binomial(q, j)*(binomial(i-j, 2)%2)))
A100216
Relates row sums of Pascal's triangle to expansion of cos(x)/exp(x).
Original entry on oeis.org
1, 4, 9, 16, 26, 44, 84, 176, 376, 784, 1584, 3136, 6176, 12224, 24384, 48896, 98176, 196864, 393984, 787456, 1573376, 3144704, 6288384, 12578816, 25163776, 50335744, 100675584, 201342976, 402661376, 805289984, 1610563584, 3221159936
Offset: 0
a(2) = 9 because (.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)^3 =
1'j + 1'k + 1j' + 1k' + 3'ii' + 2'jj' + 2'kk' + 1'jk' + 1'kj' + 1e
and the sum of the coefficients belonging to basis vectors which squared give the unit e (excluding e itself) is 3+2+2+1+1 = 9 (see comment).
-
[n le 3 select n^2 else 4*Self(n-1) -6*Self(n-2) +4*Self(n-3): n in [1..40]]; // G. C. Greubel, Mar 28 2024
-
a:= n-> (<<0|1|0>, <0|0|1>, <4|-6|4>>^n. <<1, 4, 9>>)[1, 1]:
seq(a(n), n=0..35); # Alois P. Heinz, Nov 07 2013
-
d = 4; nmax = 31; a[n_ /; n < d] := (n + 1)^2; seq = Table[a[n], {n, 0, nmax}]; seq /. Solve[ Thread[ Take[seq, nmax - d + 1] == Differences[seq, d]]] // First (* Jean-François Alcover, Nov 07 2013 *)
LinearRecurrence[{4,-6,4}, {1,4,9}, 41] (* G. C. Greubel, Mar 28 2024 *)
-
@CachedFunction
def a(n): # a = A100216
if n<3: return (n+1)^2
else: return 4*a(n-1) -6*a(n-2) +4*a(n-3)
[a(n) for n in range(41)] # G. C. Greubel, Mar 28 2024
A117352
Riordan array (1/(1-2x), x(1-2x)/(1-x)).
Original entry on oeis.org
1, 2, 1, 4, 1, 1, 8, 1, 0, 1, 16, 1, -1, -1, 1, 32, 1, -2, -2, -2, 1, 64, 1, -3, -2, -2, -3, 1, 128, 1, -4, -1, 0, -1, -4, 1, 256, 1, -5, 1, 3, 3, 1, -5, 1, 512, 1, -6, 4, 6, 6, 6, 4, -6, 1, 1024, 1, -7, 8, 8, 6, 6, 8, 8, -7, 1
Offset: 0
Triangle begins
1,
2, 1,
4, 1, 1,
8, 1, 0, 1,
16, 1, -1, -1, 1,
32, 1, -2, -2, -2, 1,
64, 1, -3, -2, -2, -3, 1
Original entry on oeis.org
0, 0, 1, -2, 5, -11, 23, -48, 102, -220, 476, -1024, 2184, -4624, 9744, -20480, 42976, -90048, 188352, -393216, 819328, -1704192, 3539200, -7340032, 15203840, -31456256, 65010688, -134217728, 276826112, -570429440, 1174409216
Offset: 0
-
a:=[-2,5,-11,23];; for n in [5..30] do a[n]:=-6*a[n-1]+-14*a[n-2] -16*a[n-3]-8*a[n-4]; od; Concatenation([0,0,1], a); # G. C. Greubel, Mar 24 2019
-
I:=[-2,5,-11,23]; [0,0,1] cat [n le 4 select I[n] else -6*Self(n-1) - 14*Self(n-2)-16*Self(n-3)-8*Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 24 2019
-
gf = x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2); CoefficientList[Series[gf, {x, 0, 30}], x] (* Jean-François Alcover, Dec 16 2014, after R. J. Mathar *)
Join[{0, 0, 1}, LinearRecurrence[{-6,-14,-16,-8}, {-2,5,-11,23}, 30]] (* Jean-François Alcover, Feb 15 2016 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(x^2*(1+x)*(1+3*x+4*x^2+3*x^3 )/((1+2*x +2*x^2)*(1+2*x)^2))) \\ G. C. Greubel, Mar 24 2019
-
(x^2*(1+x)*(1+3*x+4*x^2+3*x^3)/((1+2*x+2*x^2)*(1+2*x)^2 )).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Mar 24 2019
A137171
Interleaved reading of A000749 and its first to third differences.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 1, 4, 6, 4, 2, 10, 10, 6, 6, 20, 16, 12, 16, 36, 28, 28, 36, 64, 56, 64, 72, 120, 120, 136, 136, 240, 256, 272, 256, 496, 528, 528, 496, 1024, 1056, 1024, 992, 2080, 2080, 2016, 2016, 4160, 4096, 4032, 4096, 8256, 8128, 8128
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 4, 0, 0, 0, -6, 0, 0, 0, 4).
-
Join[{0, 0, 0, 1},LinearRecurrence[{0, 0, 0, 4, 0, 0, 0, -6, 0, 0, 0, 4},{0, 0, 1, 1, 0, 1, 2, 1, 1, 3, 3, 1},59]] (* Ray Chandler, Sep 23 2015 *)
A276755
a(n) = A275706(n)^2 + A276688(n)^2 = [n]{1+i}! * [n]{1-i}!, where [n]_q! is the q-factorial, i = sqrt(-1).
Original entry on oeis.org
1, 1, 5, 65, 1625, 66625, 4330625, 489360625, 110106140625, 52961053640625, 54285079981640625, 114704374001206640625, 484625980155098056640625, 4032572780870570929306640625
Offset: 0
-
Table[QFactorial[n, 1 + I] QFactorial[n, 1 - I], {n, 0, 20}]
Comments