cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A383961 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd divisor is its k-th divisor, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 15, 16, 11, 10, 20, 18, 32, 13, 12, 21, 50, 36, 64, 17, 14, 27, 81, 45, 30, 128, 19, 22, 28, 88, 63, 42, 105, 256, 23, 24, 33, 98, 75, 54, 135, 60, 512, 29, 25, 35, 104, 99, 66, 165, 84, 120, 1024, 31, 26, 39, 136, 117, 70, 189, 108, 140, 90
Offset: 1

Views

Author

Omar E. Pol, May 16 2025

Keywords

Comments

This is a permutation of the positive integers.
From Peter Munn, May 18 2025: (Start)
Numbers with the same factorization pattern of their sequence of divisors (see A290110) and the same parity appear here in the same column.
For example, each column k > 2 includes the subsequence 2^(k-2) * p for all prime p > 2^(k-2).
(End)

Examples

			The corner 15 X 15 of the square array is as follows:
      1,  3,  6,  15,  18,  36,  30, 105,  60, 120,  90, 315,  816, 1360, 180, ...
      2,  5,  9,  20,  50,  45,  42, 135,  84, 140, 126, 324,  880, 1520, 210, ...
      4,  7, 10,  21,  81,  63,  54, 165, 108, 168, 150, 432,  912, 1632, 252, ...
      8, 11, 12,  27,  88,  75,  66, 189, 132, 220, 198, 440, 1040, 1760, 270, ...
     16, 13, 14,  28,  98,  99,  70, 195, 156, 240, 216, 495, 1056, 1824, 300, ...
     32, 17, 22,  33, 104, 117,  72, 200, 162, 260, 234, 520, 1104, 1840, 330, ...
     64, 19, 24,  35, 136, 147,  78, 231, 204, 308, 264, 525, 1120, 1904, 378, ...
    128, 23, 25,  39, 152, 153, 100, 255, 225, 340, 280, 528, 1144, 2000, 390, ...
    256, 29, 26,  40, 176, 171, 102, 273, 228, 364, 294, 560, 1232, 2080, 396, ...
    512, 31, 34,  44, 184, 175, 110, 285, 276, 380, 306, 585, 1248, 2128, 462, ...
   1024, 37, 38,  51, 208, 207, 114, 297, 348, 405, 312, 616, 1392, 2208, 468, ...
   2048, 41, 46,  52, 232, 243, 130, 345, 372, 460, 336, 624, 1456, 2288, 510, ...
   4096, 43, 48,  55, 242, 245, 138, 351, 400, 476, 342, 675, 1458, 2320, 546, ...
   8192, 47, 49,  56, 248, 261, 144, 357, 441, 480, 350, 680, 1488, 2464, 570, ...
  16384, 53, 58,  57, 296, 272, 154, 375, 444, 500, 408, 693, 1496, 2480, 588, ...
  ...
		

Crossrefs

Column 1 gives A000079.
Column 2 gives A065091.
Column 3 consists of (A001248 U A091629 U A100484)\{4}.
Column 4 consists of numbers >= 15 in (A001749 U A030078 U A046388 U A070875).
Row 1 gives A383402.

Programs

  • Mathematica
    f[n_] := If[OddQ[n], DivisorSigma[0, n], FirstPosition[Divisors[n], n/2^IntegerExponent[n, 2]][[1]]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* Amiram Eldar, May 16 2025 *)

A303557 a(0) = 1; a(n) = 2^(n-1)*prime(n)#, where prime(n)# is the product of first n primes.

Original entry on oeis.org

1, 2, 12, 120, 1680, 36960, 960960, 32672640, 1241560320, 57111774720, 3312482933760, 205373941893120, 15197671700090880, 1246209079407452160, 107173980829040885760, 10074354197929843261440, 1067881544980563385712640, 126010022307706479514091520, 15373222721540190500719165440
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 26 2018

Keywords

Comments

For n > 0, a(n) is the smallest number m having exactly n distinct prime divisors and exactly 2*n - 1 prime divisors counted with multiplicity.

Examples

			a(1) = 2^1;
a(2) = 2^2*3;
a(3) = 2^3*3*5;
a(4) = 2^4*3*5*7;
a(5) = 2^5*3*5*7*11, etc.
		

Crossrefs

Central terms of triangle A303555 (for n > 0).

Programs

  • Mathematica
    Join[{1}, Table[2^(n - 1) Product[Prime[j], {j, n}], {n, 18}]]

Formula

a(n) = A011782(n)*A002110(n).

A335029 Numbers that are not practical (A237287) and have more divisors than any smaller number that is not practical.

Original entry on oeis.org

3, 9, 10, 44, 70, 225, 315, 770, 1575, 2835, 3465, 10010, 17325, 31185, 45045, 121275, 135135, 225225, 405405, 675675, 1576575, 2027025, 2297295, 3828825, 6891885, 11486475, 26801775, 34459425, 43648605, 72747675, 130945815, 218243025, 509233725, 654729075, 1003917915
Offset: 1

Views

Author

Amiram Eldar, May 20 2020

Keywords

Comments

The corresponding numbers of divisors are 2, 3, 4, 6, 8, 9, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 64, 72, 80, 96, 108, 120, 128, 144, 160, 192, 216, 240, 256, 288, 320, 384, 432, 480, 512, ...
Of the first 39 terms, 34 terms are also in A038547.
None of the terms are highly composite (A002182) since all the highly composite numbers are practical numbers (A005153).

Examples

			The first 5 numbers that are not practical are 3, 5, 7, 9, 10. Their numbers of divisors are 2, 2, 2, 3, 4. The record numbers of divisors are 2, 3 and 4 which occur at 3, 9 and 10.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; seq = {}; dm = 1; Do[fct = FactorInteger[n]; d = Times @@ (1 + Last/@ fct); If[d > dm && !pracQ[fct], dm = d; AppendTo[seq, n]], {n, 3, 10^5}]; seq

A356666 Smallest m such that the m-th Lucas number has exactly n divisors that are also Lucas numbers.

Original entry on oeis.org

1, 0, 3, 6, 15, 30, 45, 90, 105, 210, 405, 810, 315, 630, 3645, 2025, 945, 1890, 1575, 3150, 2835, 5670, 36450, 25025, 3465, 6930, 101250, 11025, 22050, 51030, 14175, 28350, 10395, 20790, 2952450, 175175, 17325, 34650, 1937102445, 625625, 31185, 62370, 127575, 255150
Offset: 1

Views

Author

Michel Marcus, Aug 22 2022

Keywords

Comments

Further terms <= 51030: a(28) = 11025, a(29) = 22050, a(30) = 51030, a(31) = 14175, a(32) = 28350, a(33) = 10395, a(34) = 20790, a(37) = 17325, a(38) = 34650, a(41) = 31185, a(49) = 45045. - Daniel Suteu, Aug 24 2022

Crossrefs

Cf. A105802 (similar for Fibonacci).

Programs

  • PARI
    L(n)=fibonacci(n+1)+fibonacci(n-1); \\ A000032
    isld(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ A102460
    nbld(n) = sumdiv(n, d, isld(d)); \\ A304092
    a(n) = my(k=0); while(nbld(L(k)) != n, k++); k;
    
  • PARI
    countLd(n) = my(c=0,x=2,y=1); while(x<=n, if(n%x==0, c++); [x,y]=[y,x+y]); c;
    a(n) = if(n==1, return(1)); my(k=0,x=2,y=1); while(1, if(countLd(x) == n, return(k)); [x,y,k]=[y,x+y,k+1]); \\ Daniel Suteu, Aug 24 2022

Formula

A000032(a(n)) = A356123(n).

Extensions

a(12)-a(26) from Daniel Suteu, Aug 24 2022
More terms from Daniel Suteu and David A. Corneth, Sep 04 2022

A360438 Smallest number with 2^n odd divisors.

Original entry on oeis.org

1, 3, 15, 105, 945, 10395, 135135, 2297295, 43648605, 1003917915, 25097947875, 727840488375, 22563055139625, 834833040166125, 34228154646811125, 1471810649812878375, 69175100541205283625, 3389579926519058897625, 179647736105510121574125, 10599216430225097172873375, 646552202243730927545275875
Offset: 0

Views

Author

Hartmut F. W. Hoft, Feb 07 2023

Keywords

Examples

			a(4) = A038547(2^4) = 945 = 3^(2^2-1) * 5^(2^1-1) * 7^(2^1-1)  = 3^3 * 5 * 7,
a(5) = A038547(2^5) = 10395 = 3^(2^2-1) * 5^(2^1-1) * 7^(2^1-1) * 11^(2^1-1) = 3^3 * 5 * 7 * 11,
a(24) = 3^3 * 5^3 * 7^3 * 11 * ... *79, and
a(25) = 3^7 * 5^3 * 7^3 * 11 * ... *79 since 79 < 3^4 < 83.
		

Crossrefs

Programs

  • Mathematica
    next[{num_, fList_, lastP_, {p_, k_}}] := Module[{nP, f1List, p1, k1}, nP=NextPrime[First[Last[fList]]]; If[nP{p, 2k-1}, {1}]; {{p1, k1}}=FactorInteger[Min[Map[#[[1]]^(#[[2]]+1)&, f1List]]]; {num p^k, f1List, lastP, {p1, k1}}]]
    a360438[n_] := Join[{1}, Map[First, NestList[next, {3, {{3, 1}}, 3, {3, 2}}, n-1]]]/;n>=1
    Join[{1}, a360438[20]]

Formula

a(n) = A038547(2^n).

A364582 a(n) is the least number with exactly n divisors of the form 3*k+1.

Original entry on oeis.org

1, 4, 16, 28, 80, 112, 320, 280, 784, 560, 1600, 1120, 10000, 2240, 3920, 2800, 25600, 5600, 1310720, 6160, 15680, 11200, 48400, 12320, 110000, 70000, 39200, 24640, 6553600, 30800, 5368709120, 36400, 78400, 179200, 440000, 61600, 343597383680, 1210000, 490000, 80080
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, (d%3)==1) != n, k++); k; \\ Michel Marcus, Jul 29 2023

Extensions

More terms from Bert Dobbelaere, Jul 31 2023

A364584 a(n) is the least number with exactly n divisors of the form 4*k+1.

Original entry on oeis.org

1, 5, 25, 45, 441, 225, 5103, 585, 1575, 2205, 35721, 2925, 194481, 25515, 11025, 9945, 2893401, 17325, 2711943423, 28665, 127575, 178605, 480249, 45045, 275625, 972405, 121275, 266805, 18983603961, 143325, 1441237924662543, 135135, 893025, 14467005, 3189375, 225225
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 28 2023

Keywords

Crossrefs

Extensions

More terms from Bert Dobbelaere, Jul 31 2023

A364585 a(n) is the least number with exactly n divisors of the form 4*k+3.

Original entry on oeis.org

1, 3, 15, 63, 105, 567, 315, 3969, 945, 1575, 2835, 413343, 3465, 53361, 19845, 14175, 10395, 1750329, 17325, 26040609, 31185, 99225, 480249, 219667417263, 45045, 354375, 266805, 121275, 257985, 160137547184727, 155925, 4322241, 135135, 10333575, 8751645, 2480625
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2023

Keywords

Crossrefs

Extensions

More terms from Bert Dobbelaere, Aug 01 2023

A121858 Smallest odd number having prime(n) divisors, where prime(n) is the n-th prime=A000040(n).

Original entry on oeis.org

3, 9, 81, 729, 59049, 531441, 43046721, 387420489, 31381059609, 22876792454961, 205891132094649, 150094635296999121, 12157665459056928801, 109418989131512359209, 8862938119652501095929, 6461081889226673298932241
Offset: 1

Views

Author

Lekraj Beedassy, Aug 30 2006

Keywords

Comments

a(n) is also the smallest number k with the property that the symmetric representation of sigma(k) has prime(n) subparts. - Omar E. Pol, Oct 08 2022

Crossrefs

Programs

  • Mathematica
    3^(Prime[Range[20]]-1) (* Harvey P. Dale, Mar 19 2013 *)

Formula

a(n) = 3^(prime(n)-1) = 3^A006093(n).
a(n) = A038547(A000040(n)). - Omar E. Pol, Oct 08 2022

A287661 Smallest odd number with exactly n nonprime divisors.

Original entry on oeis.org

1, 9, 27, 45, 105, 135, 225, 405, 315, 675, 177147, 1155, 945, 3375, 1575, 6075, 2835, 10125, 18225, 3465, 4725, 30375, 50625, 11025, 25515, 91125, 14175, 10395, 23625, 273375, 1476225, 17325, 33075, 759375, 50031545098999707, 31185, 70875, 1366875, 127575
Offset: 1

Views

Author

Ilya Gutkovskiy, May 29 2017

Keywords

Examples

			a(5) = 105 because 105 has 8 divisors {1, 3, 5, 7, 15, 21, 35, 105} among which 5 are nonprime {1, 15, 21, 35, 105} and 105 is the smallest odd with exactly 5 nonprime divisors.
		

Crossrefs

Formula

A033273(a(n)) = n.

Extensions

a(35)-a(39) from Giovanni Resta, May 31 2017
Previous Showing 41-50 of 61 results. Next