cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A079415 a(n) = floor(prime(n)/n) * ceiling(prime(n)/n) / 2.

Original entry on oeis.org

2, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15, 10, 10, 10, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Crossrefs

Programs

  • Magma
    [Floor(NthPrime(n)/n)*Ceiling(NthPrime(n)/n)/2: n in [1..80]]; // G. C. Greubel, Jan 19 2019
    
  • Mathematica
    fc[n_]:=Module[{c=Prime[n]/n},(Floor[c]Ceiling[c])/2]; Array[fc,80] (* Harvey P. Dale, May 20 2015 *)
  • PARI
    vector(80, n, floor(prime(n)/n)*ceil(prime(n)/n)/2) \\ G. C. Greubel, Jan 19 2019
    
  • Sage
    [floor(nth_prime(n)/n)*ceil(nth_prime(n)/n)/2 for n in (1..80)] # G. C. Greubel, Jan 19 2019

A134919 Floor(n^(5/3)).

Original entry on oeis.org

1, 3, 6, 10, 14, 19, 25, 32, 38, 46, 54, 62, 71, 81, 91, 101, 112, 123, 135, 147, 159, 172, 186, 199, 213, 228, 243, 258, 273, 289, 305, 322, 339, 356, 374, 392, 410, 429, 448, 467, 487, 507, 527, 548, 569, 590, 612, 633, 656
Offset: 1

Views

Author

Mohammad K. Azarian, Nov 17 2007

Keywords

Crossrefs

Programs

A347342 a(n) = prime(n) mod floor(prime(n) / n).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 1, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, 1, 2, 1, 1, 3, 2, 3, 4, 3, 4, 2, 1, 4, 4, 1, 1, 3, 4, 3
Offset: 1

Views

Author

Simon Strandgaard, Aug 27 2021

Keywords

Examples

			a(1) =  2 mod floor( 2 / 1) =  2 mod 2 = 0,
a(2) =  3 mod floor( 3 / 2) =  3 mod 1 = 0,
a(3) =  5 mod floor( 5 / 3) =  5 mod 1 = 0,
a(4) =  7 mod floor( 7 / 4) =  7 mod 1 = 0,
a(5) = 11 mod floor(11 / 5) = 11 mod 2 = 1.
		

Crossrefs

Programs

  • Mathematica
    A347342[n_] := Mod[Prime[n] , Floor[Prime[n]/n]]; Table[A347342[n], {n, 1, 86}] (* Robert P. P. McKone, Aug 27 2021 *)
  • PARI
    a(n) = prime(n) % (prime(n) \ n);
    
  • Ruby
    require 'prime'
    values = []
    Prime.first(30).each_with_index do |prime,i|
        values << prime % (prime/(i+1))
    end
    p values

Formula

a(n) = A000040(n) mod A038605(n).

A066367 The floor(prime(n)/n)-perfect numbers, where prime(n) denotes the n-th prime and f-perfect numbers for an arithmetical function f are defined in A066218.

Original entry on oeis.org

5, 7, 11, 49, 169
Offset: 1

Views

Author

Joseph L. Pe, Dec 21 2001

Keywords

Comments

There do not seem to be any more terms. There are no terms between 170 and 10^5.

Crossrefs

Programs

  • Mathematica
    f[x_] := Floor[Prime[x] / x]; Select[ Range[2, 10^3], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

A308082 Numbers k such that floor(prime(k)/k) < floor(prime(k+1)/(k+1)).

Original entry on oeis.org

4, 11, 30, 68, 72, 180, 189, 442, 1051, 1059, 2700, 6454, 6458, 6465, 6472, 15927, 40072, 40121, 100361, 100363, 251706, 251709, 251723, 251737, 251761, 637234, 637320, 637323, 637330, 637340, 1617174, 4124436, 4124466, 4124472, 4124705, 10553414
Offset: 1

Views

Author

Giorgos Kalogeropoulos, May 11 2019

Keywords

Comments

Largest k below 10^8 is 69709965.
If instead of "less than" in floor(prime(k)/k) < floor(prime(k+1)/(k+1)), we use "greater than", we get A283053.

Crossrefs

Programs

  • Mathematica
    Select[Range@100000, Floor[Prime@#/#] < Floor[Prime[# + 1]/(# + 1)] &]
  • PARI
    isok(k) = prime(k)\k < prime(k+1)\(k+1); \\ Michel Marcus, May 11 2019
    
  • PARI
    lista(nn) = {my(p=2, ip=1, q=3); for (n=1, nn, if (p\ip < q\(ip+1), print1(ip, ", ")); p = q; ip ++; q = nextprime(p+1););} \\ Michel Marcus, May 11 2019
Previous Showing 11-15 of 15 results.