A124733
Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (2,3,3,...) and super- and subdiagonals (1,1,1,...).
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 15, 21, 8, 1, 51, 86, 46, 11, 1, 188, 355, 235, 80, 14, 1, 731, 1488, 1140, 489, 123, 17, 1, 2950, 6335, 5397, 2730, 875, 175, 20, 1, 12235, 27352, 25256, 14462, 5530, 1420, 236, 23, 1, 51822, 119547, 117582, 74172, 32472, 10026, 2151, 306, 26, 1
Offset: 1
Row 3 is (5,5,1) because M[3]=[2,1,0;1,3,1;0,1,3] and M[3]^2=[5,5,1;5,11,6;1,6,10].
Triangle starts:
1;
2, 1;
5, 5, 1;
15, 21, 8, 1;
51, 86, 46, 11, 1;
188, 355, 235, 80, 14, 1;
-
with(linalg): m:=proc(i,j) if i=1 and j=1 then 2 elif i=j then 3 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 2,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) + GegenbauerC(n-k-1,-n+1,3/2)): seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, May 13 2016
-
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 2, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
A124576
Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (1,4,4,...) and super- and subdiagonals (1,1,1,...).
Original entry on oeis.org
1, 1, 1, 2, 5, 1, 7, 23, 9, 1, 30, 108, 60, 13, 1, 138, 522, 361, 113, 17, 1, 660, 2587, 2079, 830, 182, 21, 1, 3247, 13087, 11733, 5581, 1579, 267, 25, 1, 16334, 67328, 65600, 35636, 12164, 2672, 368, 29, 1, 83662, 351246, 365364, 220308, 86964, 23220, 4173
Offset: 1
Row 3 is (2,5,1) because M[3]=[1,1,0;1,4,1;0,1,4] and M[3]^2=[2,5,1;5,18,8;1,8,17].
Triangle starts:
1;
1, 1;
2, 5, 1;
7, 23, 9, 1;
30, 108, 60, 13, 1;
138, 522, 361, 113, 17, 1;
-
with(linalg): m:=proc(i,j) if i=1 and j=1 then 1 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 1,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
# alternative
A124576_row := proc(n)
if n = 0 then
return [1] ;
else
M := Matrix(n,n) ;
M[1,1] := 1;
for c from 2 to n do
if c = 2 then
M[1,c] := 1;
else
M[1,c] := 0;
end if;
end do:
for r from 2 to n do
for c from 1 to n do
if r = c then
M[r,c] := 4;
elif abs(r-c) = 1 then
M[r,c] := 1;
else
M[r,c] := 0;
end if;
end do:
end do:
LinearAlgebra[MatrixPower](M,n-1) ;
return [seq(%[1,r],r=1..n)] ;
end if;
end proc:
for n from 0 to 10 do
A124576_row(n) ;
print(%) ;
end do: # R. J. Mathar, May 20 2025
-
M[n_] := SparseArray[{{1, 1} -> 1, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
A126970
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1.
Original entry on oeis.org
1, 0, 1, 1, 3, 1, 3, 11, 6, 1, 11, 42, 30, 9, 1, 42, 167, 141, 58, 12, 1, 167, 684, 648, 327, 95, 15, 1, 684, 2867, 2955, 1724, 627, 141, 18, 1, 2867, 12240, 13456, 8754, 3746, 1068, 196, 21, 1, 12240, 53043, 61362, 43464, 21060, 7146, 1677, 260, 24, 1
Offset: 0
Triangle begins:
1;
0, 1;
1, 3, 1;
3, 11, 6, 1;
11, 42, 30, 9, 1;
42, 167, 141, 58, 12, 1;
167, 684, 648, 327, 95, 15, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
0, 1
1, 3, 1
0, 1, 3, 1
0, 0, 1, 3, 1
0, 0, 0, 1, 3, 1
0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
-
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 0, 3], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
A124574
Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (3,4,4,...) and super- and subdiagonals (1,1,1,...).
Original entry on oeis.org
1, 3, 1, 10, 7, 1, 37, 39, 11, 1, 150, 204, 84, 15, 1, 654, 1050, 555, 145, 19, 1, 3012, 5409, 3415, 1154, 222, 23, 1, 14445, 28063, 20223, 8253, 2065, 315, 27, 1, 71398, 146920, 117208, 55300, 16828, 3352, 424, 31, 1, 361114, 776286, 671052, 355236, 125964, 30660, 5079, 549, 35, 1
Offset: 1
Row 4 is (37,39,11,1) because M[4]= [3,1,0,0;1,4,1,0;0,1,4,1;0,0,1,4] and M[4]^3=[37,39,11,1; 39, 87, 51, 12; 11, 51, 88, 50; 1, 12, 50, 76].
Triangle starts:
1;
3, 1
10, 7, 1;
37, 39, 11, 1
150, 204, 84, 15, 1;
654, 1050, 555, 145, 19, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
3, 1
1, 4, 1
0, 1, 4, 1
0, 0, 1, 4, 1
0, 0, 0, 1, 4, 1
0, 0, 0, 0, 1, 4, 1
0, 0, 0, 0, 0, 1, 4, 1
0, 0, 0, 0, 0, 0, 1, 4, 1
0, 0, 0, 0, 0, 0, 0, 1, 4, 1 (End)
-
with(linalg): m:=proc(i,j) if i=1 and j=1 then 3 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 3,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,2)+GegenbauerC(n-k-1,-n+1,2 )): seq(print(seq(T(n,k),k=1..n)), n=1..10); # Peter Luschny, May 13 2016
-
M[n_] := SparseArray[{{1, 1} -> 3, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A126331
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 5*T(n-1,k) + T(n-1,k+1) for k >= 1.
Original entry on oeis.org
1, 4, 1, 17, 9, 1, 77, 63, 14, 1, 371, 406, 134, 19, 1, 1890, 2535, 1095, 230, 24, 1, 10095, 15660, 8240, 2269, 351, 29, 1, 56040, 96635, 59129, 19936, 4053, 497, 34, 1, 320795, 598344, 412216, 162862, 40698, 6572, 668, 39, 1
Offset: 0
Triangle begins:
1;
4, 1;
17, 9, 1;
77, 63, 14, 1;
371, 406, 134, 19, 1;
1890, 2535, 1095, 230, 24, 1;
10095, 15660, 8240, 2269, 351, 29, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
4, 1
1, 5, 1
0, 1, 5, 1
0, 0, 1, 5, 1
0, 0, 0, 1, 5, 1,
0, 0, 0, 0, 1, 5, 1
0, 0, 0, 0, 0, 1, 5, 1
0, 0, 0, 0, 0, 0, 1, 5, 1
0, 0, 0, 0, 0, 0, 0, 1, 5, 1 (End)
-
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 4, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A126791
Binomial matrix applied to A111418.
Original entry on oeis.org
1, 4, 1, 17, 7, 1, 75, 39, 10, 1, 339, 202, 70, 13, 1, 1558, 1015, 425, 110, 16, 1, 7247, 5028, 2400, 771, 159, 19, 1, 34016, 24731, 12999, 4872, 1267, 217, 22, 1, 160795, 121208, 68600, 28882, 8890, 1940, 284, 25, 1, 764388, 593019, 355890, 164136
Offset: 0
Triangle begins:
1;
4, 1;
17, 7, 1;
75, 39, 10, 1;
339, 202, 70, 13, 1;
1558, 1015, 425, 110, 16, 1;
7247, 5028, 2400, 771, 159, 19, 1;
34016, 24731, 12999, 4872, 1267, 217, 22, 1; ...
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
4, 1
1, 3, 1
0, 1, 3, 1
0, 0, 1, 3, 1
0, 0, 0, 1, 3, 1
0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 1, 3, 1
0, 0, 0, 0, 0, 0, 0, 1, 3, 1 (End)
-
A126791 := proc(n,k)
if n=0 and k = 0 then
1 ;
elif k <0 or k>n then
0;
elif k= 0 then
4*procname(n-1,0)+procname(n-1,1) ;
else
procname(n-1,k-1)+3*procname(n-1,k)+procname(n-1,k+1) ;
end if;
end proc: # R. J. Mathar, Mar 12 2013
T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,3/2) - GegenbauerC(n-k-1, -n+1, 3/2)): seq(seq(T(n,k),k=1..n),n=1..10); # Peter Luschny, May 13 2016
-
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 4, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A126953
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.
Original entry on oeis.org
1, 3, 1, 10, 3, 1, 33, 11, 3, 1, 110, 36, 12, 3, 1, 366, 122, 39, 13, 3, 1, 1220, 405, 135, 42, 14, 3, 1, 4065, 1355, 447, 149, 45, 15, 3, 1, 13550, 4512, 1504, 492, 164, 48, 16, 3, 1, 45162, 15054, 5004, 1668, 540, 180, 51, 17, 3, 1
Offset: 0
Triangle begins:
1;
3, 1;
10, 3, 1;
33, 11, 3, 1;
110, 36, 12, 3, 1;
366, 122, 39, 13, 3, 1;
1220, 405, 135, 42, 14, 3, 1;
4065, 1355, 447, 149, 45, 15, 3, 1;
-
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
Table[T[n, k, 3, 0], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
A005775
Number of compact-rooted directed animals of size n having 3 source points.
Original entry on oeis.org
1, 4, 14, 45, 140, 427, 1288, 3858, 11505, 34210, 101530, 300950, 891345, 2638650, 7809000, 23107488, 68375547, 202336092, 598817490, 1772479905, 5247421410, 15538054455, 46019183840, 136325212750, 403933918375, 1197131976846, 3548715207534, 10521965227669
Offset: 3
G.f. = x^3 + 4*x^4 + 14*x^5 + 45*x^6 + 140*x^7 + 427*x^8 + 1288*x^9 + 3858*x^10 + ...
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a005775 = flip a038622 2 . (subtract 1) -- Reinhard Zumkeller, Feb 26 2013
-
seq(simplify(GegenbauerC(n-4,-n+1,-1/2) + GegenbauerC(n-3,-n+1,-1/2)),n=3..28); # Peter Luschny, May 12 2016
-
nmax = 28; t[n_ /; n > 0, k_ /; k >= 1] := t[n, k] = t[n-1, k-1] + t[n-1, k] + t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[?Negative, ?Negative] = 0; t[n, 0] := 2*t[n-1, 0] + t[n-1, 1]; a[n_] := t[n-1, 2]; Table[a[n], {n, 3, nmax} ] (* Jean-François Alcover, Jul 03 2013, from A038622 *)
-
{a(n) = polcoeff( (x^2 + x - 1 + (x^2 - 3*x + 1) * sqrt((1 + x) / (1 - 3*x) + x^3 * O(x^n))) / (2*x^2), n)};
-
{a(n) = n--; sum(k=0, n, binomial(n, k) * binomial(k, k\2 -1))}; /* Michael Somos, May 12 2016 */
A333650
Triangle read by rows: T(n,k) gives the number of domino towers of height k consisting of n bricks.
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 1, 7, 11, 8, 1, 12, 24, 28, 16, 1, 20, 52, 70, 68, 32, 1, 33, 110, 168, 193, 160, 64, 1, 54, 228, 401, 497, 510, 368, 128, 1, 88, 467, 944, 1257, 1412, 1304, 832, 256, 1, 143, 949, 2187, 3172, 3736, 3879, 3248, 1856, 512
Offset: 1
Table begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11
---+-----------------------------------------------------
1 | 1
2 | 1 2
3 | 1 4 4
4 | 1 7 11 8
5 | 1 12 24 28 16
6 | 1 20 52 70 68 32
7 | 1 33 110 168 193 160 64
8 | 1 54 228 401 497 510 368 128
9 | 1 88 467 944 1257 1412 1304 832 256
10 | 1 143 949 2187 3172 3736 3879 3248 1856 512
11 | 1 232 1916 5010 7946 9778 10766 10360 7920 4096 1024
.
T(3,2) = 4 because there are four domino towers of height two consisting of three bricks:
+-------+-------+ +-------+ +-------+
| | | | | | |
+---+---+---+---+, +---+---+---+---+, +-------+---+---+---+, and
| | | | | | | |
+-------+ +-------+-------+ +-------+-------+
+-------+
| |
+---+---+---+-------+.
| | |
+-------+-------+
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 25-27.
- Peter Luschny, Table of n, a(n), for row(k) for k = 1..18 (the first 14 rows by Peter Kagey).
- J. Bétréma and J.-G. Penaud, Animaux et arbres guingois, Theoretical Computer Science 117, 67-89, 1993.
- D. Gouyou-Beauchamps and G. Viennot, Equivalence of the two dimensional directed animals problem to a one-dimensional path problem, Adv. in Appl. Math. 9(3), 334-357, 1988.
- Peter Kagey, Symmetric Brick Stacking, Mathematics Stack Exchange, 2018.
- Doron Zeilberger, The amazing 3^n theorem and its even more amazing proof, arXiv:1208.2258 [math.CO], 2012.
- Doron Zeilberger, The 27 towers with 4 domino pieces, illustration.
Cf.
A000071 (col. 2),
A339493 (col. 3),
A000244,
A038622,
A168368,
A264746,
A320314,
A339252,
A339254,
A339029,
A339346,
A339494.
A301475
Triangular array of polynomials related to the Motzkin triangle and to rooted polyominoes, coefficients in ascending order, read by rows, for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 4, 5, 3, 1, 5, 3, 1, 3, 1, 1, 9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1, 21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1, 51, 76, 69, 44, 20, 6, 1, 76, 69, 44, 20, 6, 1, 69, 44, 20, 6, 1, 44, 20, 6, 1, 20, 6, 1, 6, 1, 1
Offset: 0
Triangle of polynomials starts:
1
1 + x, 1
2 + 2 x + x^2, 2 + x, 1
4 + 5 x + 3 x^2 + x^3, 5 + 3 x^2 + x, 3 + x, 1
9 + 12 x + 9 x^2 + 4 x^3 + x^4, 12 + 9 x + 4 x^2 + x^3, 9 + 4 x + x^2, 4 + x, 1
.
Triangle of coefficients starts:
1
1, 1, 1
2, 2, 1, 2, 1, 1
4, 5, 3, 1, 5, 3, 1, 3, 1, 1
9, 12, 9, 4, 1, 12, 9, 4, 1, 9, 4, 1, 4, 1, 1
21, 30, 25, 14, 5, 1, 30, 25, 14, 5, 1, 25, 14, 5, 1, 14, 5, 1, 5, 1, 1
-
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
T := (n,k) -> binomial(n,k)*hypergeom([-k/2,1/2-k/2], [-k+n+2], 4);
P := (n,m) -> add(simplify(T(n,k)*x^(n-k-m)), k=0..n-m);
for n from 0 to 5 do seq(sort(P(n,j),x,ascending), j=0..n) od;
for n from 0 to 5 do seq(CoeffList(P(n,j)), j=0..n) od;
Comments