cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 73 results. Next

A028886 Primes of the form k^2 - 8.

Original entry on oeis.org

17, 41, 73, 113, 281, 353, 433, 521, 617, 953, 1217, 1361, 2017, 2393, 2593, 2801, 4217, 4481, 6553, 7561, 8273, 8641, 10193, 10601, 13217, 13681, 14153, 14633, 15121, 16633, 17681, 18217, 20441, 21017, 21601, 22193, 25913, 26561, 29921
Offset: 1

Views

Author

Keywords

Comments

Primes of A028884. Also subsequence of A038873. - Klaus Purath, Jan 28 2020

Crossrefs

Programs

  • Magma
    [a: n in [3..300] | IsPrime(a) where a is n^2-8]; // Vincenzo Librandi, Dec 01 2011
  • Mathematica
    Select[Range[3,1000]^2-8,PrimeQ] (* Vincenzo Librandi, Dec 01 2011 *)

A059770 First solution of x^2 = 2 mod p for primes p such that a solution exists.

Original entry on oeis.org

0, 3, 6, 5, 8, 17, 7, 12, 32, 9, 25, 14, 38, 51, 16, 31, 46, 13, 57, 52, 20, 15, 85, 99, 22, 60, 110, 96, 132, 66, 120, 26, 167, 19, 79, 137, 53, 97, 188, 206, 21, 30, 80, 203, 187, 91, 157, 249, 201, 34, 142, 166, 222, 194, 296, 94, 67, 36, 283, 324, 27, 102, 113, 73
Offset: 1

Views

Author

Klaus Brockhaus, Feb 21 2001

Keywords

Comments

Solutions mod p are represented by integers from 0 to p-1. For p > 2: If x^2 = 2 has a solution mod p, then it has exactly two solutions and their sum is p; i is a solution mod p of x^2 = 2 iff p-i is a solution mod p of x^2 = 2. No integer occurs more than once in this sequence. Moreover, no integer (except 0) occurs both in this sequence and in sequence A059771 of the second solutions (Cf. A059772).

Examples

			a(6) = 17, since 41 is the sixth term of A038873, 17 and 24 are the solutions mod 41 of x^2 = 2 and 17 is the smaller one.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := MemberQ[{1, 2, 7}, Mod[n, 8]]; f[n_] := PowerMod[2, 1/2, n]; f@ Select[ Prime[Range[135]], fQ] (* Robert G. Wilson v, Oct 18 2011 *)

Formula

a(n) = first (least) solution of x^2 = 2 mod p, where p is the n-th prime such that x^2 = 2 mod p has a solution, i.e. p is the n-th term of A038873.

A059771 Second solution of x^2 = 2 mod p for primes p such that a solution exists.

Original entry on oeis.org

0, 4, 11, 18, 23, 24, 40, 59, 41, 70, 64, 83, 65, 62, 111, 106, 105, 154, 134, 141, 179, 208, 148, 140, 219, 197, 153, 175, 149, 245, 193, 311, 186, 340, 288, 246, 348, 312, 243, 227, 418, 419, 377, 260, 292, 396, 346, 272, 368, 543, 451, 433, 379, 413, 321
Offset: 1

Views

Author

Klaus Brockhaus, Feb 21 2001

Keywords

Comments

Solutions mod p are represented by integers from 0 to p-1. For p > 2: If x^2 = 2 has a solution mod p, then it has exactly two solutions and their sum is p; i is a solution mod p of x^2 = 2 iff p-i is a solution mod p of x^2 = 2. No integer occurs more than once in this sequence. Moreover, no integer (except 0) occurs both in this sequence and in sequence A059770 of the first solutions (Cf. A059772).

Examples

			a(6) = 24 since 41 is the sixth term of A038873, 17 and 24 are the solutions mod 41 of x^2 = 2 and 24 is the larger one.
		

Crossrefs

Programs

  • Maple
    R:= 0: p:= 2: count:= 1:
    while count < 100 do
      p:= nextprime(p);
      if NumberTheory:-QuadraticResidue(2,p)=1 then
        v:= NumberTheory:-ModularSquareRoot(2,p);
        R:= R, max(v,p-v);
        count:= count+1
      fi
    od:
    R; # Robert Israel, Sep 07 2023

Formula

a(n) = second (larger) solution of x^2 = 2 mod p, where p is the n-th prime such that x^2 = 2 mod p has a solution, i.e. p is the n-th term of A038873. a(n) = 0 if x^2 = 2 mod p has one solution (only for p = 2).

A060515 Integers i > 1 for which there is no prime p such that i is a solution mod p of x^2 = 2.

Original entry on oeis.org

2, 10, 28, 39, 45, 54, 58, 74, 87, 88, 101, 108, 114, 116, 130, 143, 147, 156, 164, 168, 178, 180, 181, 225, 228, 235, 238, 242, 244, 248, 256, 263, 270, 271, 277, 304, 305, 317, 318, 325, 333, 334, 338, 347, 363, 367, 373, 374, 378, 380, 381, 386, 397, 402
Offset: 1

Views

Author

Klaus Brockhaus, Mar 24 2001

Keywords

Comments

Solutions mod p are represented by integers from 0 to p-1. The following equivalences holds for i > 1: There is a prime p such that i is a solution mod p of x^2 = 2 iff i^2-2 has a prime factor > i; i is a solution mod p of x^2 = 2 iff p is a prime factor of i^2-2 and p > i.

Examples

			a(1) = 2, since there is no prime p such that 2 is a solution mod p of x^2 = 2. a(2) = 10, since there is no prime p such that 10 is a solution mod p of x^2 = 2 and for each integer i from 3 to 9 there is a prime q such that i is a solution mod q of x^2 = 2 (cf. A059772).
		

Crossrefs

Programs

  • Maple
    select(t -> max(numtheory:-factorset(t^2-2)) <= t, [$2..1000]); # Robert Israel, Feb 23 2016
  • PARI
    is(n)=my(f=factor(n^2-2)[,1]);n>1&&f[#f]<=n \\ Charles R Greathouse IV, Aug 24 2013

Formula

Integer i > 1 is a term of this sequence iff i^2-2 has no prime factor > i.

A087780 Number of non-congruent solutions to x^2 == 2 mod n.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[2, e_] := Boole[e == 1]; f[p_, e_] := If[MemberQ[{1, 7}, Mod[p, 8]], 2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, (f[i,2] == 1), if(f[i,1]%8 == 1 || f[i,1]%8 == 7, 2, 0)));} \\ Amiram Eldar, Nov 21 2023
  • Sage
    def A087780(n) :
        res = 1
        for (p, m) in factor(n) :
            if p % 8 in [1, 7] : res *= 2
            elif not (p==2 and m==1) : return 0
        return res
    # Eric M. Schmidt, Apr 20 2013
    

Formula

Multiplicative with a(p^m) = 2 for p == 1, 7 (mod 8); a(p^m) = 0 for p == 3, 5 (mod 8); a(2^1) = 1; a(2^m) = 0 for m > 1. - Eric M. Schmidt, Apr 20 2013
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(sqrt(2)+1)/(sqrt(2)*zeta(2)) = A196525/A013661 = 0.37887551404073012021... . - Amiram Eldar, Nov 21 2023

Extensions

More terms from David Wasserman, Jun 17 2005

A097958 Primes p such that p divides 6^((p-1)/2) - 3^((p-1)/2).

Original entry on oeis.org

3, 7, 17, 23, 31, 41, 47, 71, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 191, 193, 199, 223, 233, 239, 241, 257, 263, 271, 281, 311, 313, 337, 353, 359, 367, 383, 401, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 521, 569, 577, 593, 599, 601, 607, 617
Offset: 1

Views

Author

Cino Hilliard, Sep 06 2004

Keywords

Comments

Apart from the first term, the same as A001132 or A038873. - Jianing Song, Apr 21 2022

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]],Divisible[6^((#-1)/2)-3^((#-1)/2),#]&] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    \s = +-1,d=diff ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0,print1(p","))) }
    
  • PARI
    isA097958(p) = (p==3) || (isprime(p) && kronecker(p,2)==1) \\ Jianing Song, Apr 21 2022

Formula

Equals {3} union A001132. - Jianing Song, Apr 21 2022

Extensions

Definition corrected by Cino Hilliard, Nov 10 2008
Definition clarified by Harvey P. Dale, Dec 25 2021
Offset corrected by Jianing Song, Apr 21 2022

A141750 Primes of the form 4*x^2 + 3*x*y - 4*y^2 (as well as of the form 2*x^2 + 9*x*y + y^2).

Original entry on oeis.org

2, 3, 19, 23, 37, 41, 61, 67, 71, 73, 79, 89, 97, 109, 127, 137, 149, 173, 181, 211, 223, 227, 251, 257, 269, 283, 293, 311, 317, 347, 349, 353, 359, 367, 373, 383, 389, 397, 401, 419, 439, 457, 461, 463, 479, 487, 499, 503, 509, 523, 547, 557, 587, 593, 607
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 03 2008

Keywords

Comments

Discriminant = 73. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac.
Is this the same as A038957? - R. J. Mathar, Jul 04 2008. Answer: almost certainly - see the Tunnell notes in A033212. - N. J. A. Sloane, Oct 18 2014

Examples

			a(2) = 3 because we can write 3 = 4*1^2 + 3*1*1 - 4*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

A141772 Primes of the form 3*x^2 + 5*x*y - 5*y^2 (as well as of the form 7*x^2 + 13*x*y + 3*y^2).

Original entry on oeis.org

3, 5, 7, 17, 23, 37, 73, 97, 107, 113, 163, 167, 173, 193, 197, 227, 233, 277, 283, 313, 317, 337, 347, 367, 397, 487, 503, 547, 607, 617, 643, 653, 673, 677, 683, 743, 787, 823, 827, 853, 857, 877, 887, 907, 947, 983, 997, 1013, 1093, 1117, 1153, 1163, 1187
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 85. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(1) = 3 because we can write 3 = 3*1^2 + 5*1*0 - 5*0^2 (or 3 = 7*0^2 + 13*0*1 + 3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141773 (d=85). See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

More terms from Colin Barker, Apr 04 2015
Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A141778 Primes of the form 4*x^2 + 3*x*y - 5*y^2 (as well as of the form 8*x^2 + 11*x*y + y^2).

Original entry on oeis.org

2, 5, 11, 17, 47, 53, 67, 71, 73, 79, 89, 97, 107, 109, 131, 139, 157, 167, 173, 179, 199, 223, 227, 233, 251, 257, 263, 269, 271, 277, 283, 307, 311, 317, 331, 347, 367, 373, 401, 409, 443, 449, 461, 463, 467, 479, 487, 509, 523, 587, 601, 607, 613, 619, 631
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 89. Class = 1. Binary quadratic forms a*x^2+b*x*y+c*y^2 have discriminant d=b^2-4ac and gcd(a,b,c)=1.
A subsequence of (and may possibly coincide with) A038977. - R. J. Mathar, Jul 22 2008

Examples

			a(1) = 2 because we can write 2 = 4*1^2 + 3*1*1 - 5*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141772, A141773 (d=85). A141776, A141777 (d=88). A141778 (d=89). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A142955 Primes of the form 3*x^2 + 4*x*y - 5*y^2 (as well as of the form 3*x^2 + 10*x*y + 2*y^2).

Original entry on oeis.org

2, 3, 19, 31, 59, 67, 71, 79, 103, 107, 127, 151, 167, 179, 211, 223, 227, 307, 331, 379, 383, 431, 439, 487, 523, 547, 563, 599, 607, 659, 683, 743, 751, 787, 811, 827, 839, 863, 887, 907, 911, 971, 983, 991, 1019, 1039, 1063, 1091, 1123, 1171, 1231, 1283
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (laucabfer(AT)alum.us.es), Jul 14 2008

Keywords

Comments

Discriminant = 76. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(4) = 31 because we can write 31 = 3*3^2 + 4*3*2 - 5*2^2 (or 31 = 3*1^2 + 10*1*2 + 2*2^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A142956 (d=76). A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141111, A141112 (d=65).

Extensions

More terms from Colin Barker, Apr 05 2015
Edited by M. F. Hasler, Feb 18 2022
Previous Showing 61-70 of 73 results. Next