cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A114844 Sum of first n digits of Pi to digit-wise power of first n digits of e.

Original entry on oeis.org

9, 10, 14, 15, 40, 43046761, 43046763, 44726379, 44726404, 44732965, 44733590, 44766358, 432186847, 432186848, 432193409, 432193652, 432193656, 432193683, 432226451, 432226515, 432273171, 432273172, 432273208, 432338744, 432340931
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

The 331st digit of Pi and the 331st digit of e are both 0, so to generate any additional terms of the sequence beyond 330 terms one would have to define 0^0 to be either 0 or 1. - Harvey P. Dale, Aug 05 2014

Examples

			Since Pi =
3.1415926535897932384626433832795028841971693993751058209749445923078164062...
and e =
2.71828182845904523536028747135266249775724709369995957496696762772407663...
we have:
a(1) = 9 = 3^2.
a(2) = 10 = 3^2 + 1^7.
a(3) = 14 = 3^2 + 1^7 + 4^1.
a(4) = 15 = 3^2 + 1^7 + 4^1 + 1^8.
a(5) = 40 = 3^2 + 1^7 + 4^1 + 1^8 + 5^2.
a(6) = 43046761 = 3^2 + 1^7 + 4^1 + 1^8 + 5^2 + 9^8.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=30},Accumulate[RealDigits[Pi,10,nn][[1]]^RealDigits[E,10,nn] [[1]]]] (* Harvey P. Dale, Aug 05 2014 *)

Formula

a(n) = Sum_{i=1..n} A000796(i)^A001113(i).

A216707 Decimal expansion of e^(2*Pi).

Original entry on oeis.org

5, 3, 5, 4, 9, 1, 6, 5, 5, 5, 2, 4, 7, 6, 4, 7, 3, 6, 5, 0, 3, 0, 4, 9, 3, 2, 9, 5, 8, 9, 0, 4, 7, 1, 8, 1, 4, 7, 7, 8, 0, 5, 7, 9, 7, 6, 0, 3, 2, 9, 4, 9, 1, 5, 5, 0, 7, 2, 0, 5, 2, 5, 5, 0, 3, 7, 3, 1, 4, 4, 9, 4, 5, 4, 3, 9, 6, 6, 2, 7, 2, 1, 3, 6, 0, 9, 1, 5, 3, 8, 9, 8, 3, 0, 4, 6, 1, 8, 8, 5, 9, 8, 8, 0, 4
Offset: 3

Views

Author

John W. Nicholson, Sep 16 2012

Keywords

Comments

Gelfond's constant squared.
The proportionate distance between images of an object (e.g., galaxy) seen behind a nonrotating (Schwarzschild) black hole, see Sneppen link. The factor is reduced for rotating (Kerr) black holes. - Charles R Greathouse IV, Oct 17 2021

Examples

			535.4916555247647365030493295890471814778057976032949155072052550373...
		

Crossrefs

Cf. A039661.

Programs

Formula

Equals A039661^2.
Equals (i^i)^(-4).

A352396 Integer part of e[n]Pi, where [n] indicates hyper-n, e = 2.718281828459045..., and Pi = 3.141592653589793... (using H. Kneser's proposal for n > 3).

Original entry on oeis.org

4, 5, 8, 23, 37149801960
Offset: 0

Views

Author

Marco Ripà, Apr 08 2022

Keywords

Comments

The first term of this sequence is given by floor(e[0]Pi) = floor(Pi + 1) = floor(4.14159) = 4, which is the integer part of "e zeration Pi". In general, zeration is not a commutative arithmetic operation, while floor(e[1]Pi) = floor(Pi + e) = floor(5.85987) = 5 and floor(e[2]Pi) = floor(Pi * e) = floor(8.53973) = 8 hold since e[1]Pi = Pi[1]e and e[2]Pi = Pi[2]e.
If n = 3, then floor(e[3]Pi) = floor(e^Pi) = floor(23.14069) = 23 (if n > 2, then hyper-n is not characterized by the commutative property anymore, even if we can find fascinating examples as 4[3]2 = 2[3]4 = 16).
Now, tetration can be extended to complex bases as described in the Paulsen reference and the corresponding term of the present sequence can be found using his online calculator (see Links), so we have that floor(e[4]Pi) = floor(37149801960.55) = 37149801960. An easy proof that 37149801960.55999 > e^^Pi > 37149801960.55 follows from the chain of inequalities 37149801960.5569855999 > |37149801960.5569855 + 5.9249049902894650649*10^(-11)| > e^^Pi > |37149801960.556985498 + 5.9249049902894650647*10^(-11)| > 37149801960.55.
As far as we know, it has not been proved if e^^Pi is an irrational number (or not).

Examples

			For n = 3, a(3) = floor(e[3]Pi) = floor(e^Pi) = 15.
		

Crossrefs

Formula

a(n) = floor(e[n]Pi).

A094078 Decimal expansion of Pi + arctan(e^Pi).

Original entry on oeis.org

4, 6, 6, 9, 2, 0, 1, 9, 3, 1, 8, 5, 9, 9, 0, 7, 7, 3, 1, 5, 5, 8, 8, 5, 2, 6, 2, 6, 0, 8, 2, 3, 9, 7, 8, 7, 4, 5, 5, 7, 3, 1, 5, 7, 1, 2, 5, 4, 9, 3, 2, 2, 9, 8, 0, 1, 2, 6, 8, 7, 1, 9, 7, 4, 3, 6, 0, 8, 5, 1, 7, 6, 6, 1, 2, 1, 9, 2, 2, 6, 2, 5, 4, 2, 5, 9, 0, 4, 6, 9, 9, 2, 7, 3, 1, 4, 8, 8, 0, 9, 1, 0, 3, 8, 3
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Apr 30 2004

Keywords

Comments

This is an approximation to the Feigenbaum constant.

Examples

			4.669201931859907731558852626...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi + ArcTan[E^Pi], 10, 120][[1]] (* Robert G. Wilson v, May 04 2004 *)

Extensions

More terms from Klaus Brockhaus and Robert G. Wilson v, May 03 2004

A104791 In decimal expansion of exp(Pi), positions of 10-digit partitions containing exactly 10 distinct digits.

Original entry on oeis.org

12186, 13451, 15422, 27621, 27622, 32790, 33051, 35249, 38760
Offset: 1

Views

Author

Zak Seidov, Mar 25 2005

Keywords

Examples

			p[ 12186 ]= {8 4 2 7 0 3 5 6 9 1},
p[ 13451 ]= {0 7 9 5 3 4 1 6 2 8},
p[ 15422 ]= {0 2 9 1 3 8 7 5 6 4},
p[ 27621 ]= {9 3 2 5 8 4 1 0 7 6},
p[ 27622 ]= {3 2 5 8 4 1 0 7 6 9},
p[ 32790 ]= {2 4 0 8 6 5 3 7 1 9},
p[ 33051 ]= {6 2 5 3 9 0 4 1 8 7},
p[ 35249 ]= {6 3 7 2 5 8 9 4 0 1},
p[ 38760 ]= {3 1 0 6 9 2 5 4 7 8}.
		

Crossrefs

A277092 Decimal expansion of e^Pi/Pi^e.

Original entry on oeis.org

1, 0, 3, 0, 3, 4, 5, 5, 2, 4, 2, 1, 6, 2, 1, 0, 8, 3, 2, 4, 4, 1, 5, 5, 2, 4, 3, 7, 5, 4, 4, 1, 4, 2, 3, 9, 1, 3, 3, 1, 1, 6, 7, 4, 5, 3, 5, 4, 2, 6, 3, 5, 0, 4, 7, 7, 5, 2, 0, 6, 0, 3, 7, 6, 9, 4, 3, 6, 8, 5, 8, 3, 3, 3, 3, 6, 7, 0, 7, 8, 4, 6, 6, 5, 3, 6, 6
Offset: 1

Views

Author

Keywords

Examples

			1.030345524216210832441552437544142391331167453542635047752...
		

Crossrefs

Programs

Extensions

More digits from Jon E. Schoenfield, Mar 15 2018

A372719 Decimal expansion of Sum_{k >= 1} floor(k*e^(Pi*sqrt(163/9)))/2^k.

Original entry on oeis.org

1, 2, 8, 0, 6, 3, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 7

Views

Author

Paolo Xausa, May 11 2024

Keywords

Examples

			1280639.9999999999999999999999999999999999999999999999999999...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Sum[Floor[k*E^(Pi*Sqrt[163/9])]/2^k, {k, 400}], 10, 100]]

Formula

Approximately 1280640, correct to at least half a billion digits: see Sum 10 in Borwein and Borwein (1992), p. 623.

A380965 Decimal expansion of the solution to e^(x+Pi) = Pi^(x+e).

Original entry on oeis.org

2, 0, 6, 5, 5, 1, 7, 1, 6, 7, 7, 8, 6, 4, 9, 6, 6, 3, 9, 1, 3, 0, 7, 1, 7, 5, 6, 3, 0, 8, 6, 9, 6, 9, 8, 5, 0, 2, 3, 0, 9, 1, 4, 4, 3, 9, 0, 2, 7, 8, 7, 2, 4, 7, 5, 8, 1, 2, 9, 1, 8, 5, 7, 2, 0, 4, 2, 4, 6, 3, 1, 4, 6, 8, 6, 6, 1, 0, 5, 7, 1, 3, 1, 3, 6, 5, 4, 7, 5, 7, 2, 6, 4, 4, 0, 9, 8, 6, 6, 5
Offset: 0

Views

Author

Stefano Spezia, Feb 09 2025

Keywords

Comments

It would be nice to have a reference to the scientific literature for this number. - N. J. A. Sloane, Feb 11 2025

Examples

			0.2065517167786496639130717563086969850230914439...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(Pi-E Log[Pi])/(Log[Pi]-1),10,100][[1]]

Formula

Equals (Pi - e*log(Pi))/(log(Pi) - 1).
Previous Showing 31-38 of 38 results.