cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A075501 Stirling2 triangle with scaled diagonals (powers of 6).

Original entry on oeis.org

1, 6, 1, 36, 18, 1, 216, 252, 36, 1, 1296, 3240, 900, 60, 1, 7776, 40176, 19440, 2340, 90, 1, 46656, 489888, 390096, 75600, 5040, 126, 1, 279936, 5925312, 7511616, 2204496, 226800, 9576, 168, 1, 1679616, 71383680
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(6*z) - 1)*x/6) - 1.

Examples

			[1]; [6,1]; [36,18,1]; ...; p(3,x) = x(36 + 18*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*      1
*      6       1
*     36      18       1
*    216     252      36       1
*   1296    3240     900      60      1
*   7776   40176   19440    2340     90    1
*  46656  489888  390096   75600   5040  126   1
* 279936 5925312 7511616 2204496 226800 9576 168 1
(End)
		

Crossrefs

Columns 1-7 are A000400, A016175, A075916-A075920. Row sums are A005012.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> 6^n, 9); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[6^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 10;
    M = BellMatrix[6^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(6^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (6^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*6)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 6m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-6k*x), m >= 1.
E.g.f. for m-th column: (((exp(6x)-1)/6)^m)/m!, m >= 1.

A075503 Stirling2 triangle with scaled diagonals (powers of 8).

Original entry on oeis.org

1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(8*z) - 1)*x/8) - 1.

Examples

			[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*       1
*       8        1
*      64       24        1
*     512      448       48       1
*    4096     7680     1600      80      1
*   32768   126976    46080    4160    120     1
*  262144  2064384  1232896  179200   8960   168   1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
		

Crossrefs

Columns 1-7 are A001018, A060195, A076003-A076007. Row sums are A075507.

Programs

  • Mathematica
    Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (8^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*8)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 8m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-8k*x), m >= 1.
E.g.f. for m-th column: (((exp(8x)-1)/8)^m)/m!, m >= 1.

A049404 Triangle read by rows, the Bell transform of n!*binomial(2,n) (without column 0).

Original entry on oeis.org

1, 2, 1, 2, 6, 1, 0, 20, 12, 1, 0, 40, 80, 20, 1, 0, 40, 360, 220, 30, 1, 0, 0, 1120, 1680, 490, 42, 1, 0, 0, 2240, 9520, 5600, 952, 56, 1, 0, 0, 2240, 40320, 48720, 15120, 1680, 72, 1, 0, 0, 0, 123200, 332640, 184800, 35280, 2760, 90, 1, 0, 0, 0, 246400, 1786400
Offset: 1

Views

Author

Keywords

Comments

Previous name was: A triangle of numbers related to triangle A049324.
a(n,1) = A008279(2,n-1). a(n,m) =: S1(-2; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m) = A008275 (signed Stirling first kind), S1(2; n,m) = A008297(n,m) (signed Lah numbers).
a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A004747(n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
For the definition of the Bell transform see A264428 and the link. - Peter Luschny, Jan 16 2016

Examples

			E.g. row polynomial E(3,x) = 2*x+6*x^2+x^3.
Triangle starts:
{1}
{2,  1}
{2,  6,  1}
{0, 20, 12, 1}
		

Crossrefs

Row sums give A049425.

Programs

  • Mathematica
    rows = 11;
    a[n_, m_] := BellY[n, m, Table[k! Binomial[2, k], {k, 0, rows}]];
    Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
    bell_matrix(lambda n: factorial(n)*binomial(2, n), 8) # Peter Luschny, Jan 16 2016

Formula

a(n, m) = n!*A049324(n, m)/(m!*3^(n-m));
a(n, m) = (3*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1;
a(n, m) = 0, n
E.g.f. for m-th column: ((x+x^2+(x^3)/3)^m)/m!.
a(n,m) = n!/(3^m * m!)*(Sum_{i=0..floor(m-n/3)} (-1)^i * binomial(m,i) * binomial(3*m-3*i,n)), 0 for empty sums. - Werner Schulte, Feb 20 2020

Extensions

New name from Peter Luschny, Jan 16 2016

A051150 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -5, 1, 50, -15, 1, -750, 275, -30, 1, 15000, -6250, 875, -50, 1, -375000, 171250, -28125, 2125, -75, 1, 11250000, -5512500, 1015000, -91875, 4375, -105, 1, -393750000, 204187500, -41037500, 4230625
Offset: 1

Keywords

Comments

a(n,m) = R_n^m(a=0, b=5) in the notation of the given 1961 and 1962 references.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 5*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle A008275 with diagonal d >= 0 (main diagonal d = 0) scaled with 5^d.

Examples

			Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
        1;
       -5,      1;
       50,    -15,      1;
     -750,    275,    -30,   1;
    15000,  -6250,    875, -50,    1;
  -375000, 171250, -28125, 2125, -75, 1;
  ...
3rd row o.g.f.: E(3,x) = 50*x - 15*x^2 + x^3.
		

Crossrefs

First (m=1) column sequence: A052562(n-1).
Row sums (signed triangle): A008546(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A008548(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051141 (b=3), A051142 (b=4).

Formula

a(n, m) = a(n-1, m-1) - 5*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) := 0 for n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 5*x)/5)^m/m!.
a(n, m) = S1(n, m)*5^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).

A051151 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -6, 1, 72, -18, 1, -1296, 396, -36, 1, 31104, -10800, 1260, -60, 1, -933120, 355104, -48600, 3060, -90, 1, 33592320, -13716864, 2104704, -158760, 6300, -126, 1, -1410877440, 609700608, -102114432, 8772624, -423360, 11592, -168
Offset: 1

Keywords

Comments

a(n,m) = R_n^m(a=0, b=6) in the notation of the given 1961 and 1962 references.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x-6*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle A008275 with diagonal d >= 0 (main diagonal d = 0) scaled with 6^d.

Examples

			Triangle a(n,m) (with rows n >= 1 and columns m = 1..n) begins:
        1;
       -6,      1;
       72,    -18,      1;
    -1296,    396,    -36,    1;
    31104, -10800,   1260,  -60,   1;
  -933120, 355104, -48600, 3060, -90, 1;
   ...
3rd row o.g.f.: E(3,x) = 72*x - 18*x^2 + x^3.
		

Crossrefs

First (m=1) column sequence is: A047058(n-1).
Row sums (signed triangle): A008543(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A008542(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051141 (b=3), A051142 (b=4), A051150 (b=5).

Formula

a(n, m) = a(n-1, m-1) - 6*(n-1)*a(n-1, m), n >= m >= 1; a(n, m) := 0, n < m; a(n, 0) := 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: ((log(1 + 6*x)/6)^m)/m!.
a(n, m) = S1(n, m)*6^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).

Extensions

Various sections edited by Petros Hadjicostas, Jun 08 2020

A051186 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -7, 1, 98, -21, 1, -2058, 539, -42, 1, 57624, -17150, 1715, -70, 1, -2016840, 657874, -77175, 4165, -105, 1, 84707280, -29647548, 3899224, -252105, 8575, -147, 1, -4150656720, 1537437132, -220709524, 16252369, -672280, 15778, -196, 1
Offset: 1

Keywords

Comments

T(n,m) = R_n^m(a=0, b=7) in the notation of the given 1962 reference.
T(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} T(n,m)*x^m = Product_{j=0..n-1} (x-7*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
From Petros Hadjicostas, Jun 07 2020: (Start)
For integers n, m >= 0 and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and further examined by Mitrinovic and Mitrinovic (1962).
They are defined via Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0. As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_1^0(a,b) = a, R_1^1(a,b) = 1, R_n^m(a,b) = 0 for n < m, and R_0^0(a,b) = 1.
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m).
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current array, T(n,m) = R_n^m(a=0, b=7) but with no zero row or column. (End)

Examples

			Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
         1;
        -7,      1;
        98,    -21,      1;
     -2058,    539,    -42,    1;
     57624, -17150,   1715,  -70,    1;
  -2016840, 657874, -77175, 4165, -105, 1;
  ...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 7*j) = 98*x - 21*x^2 + x^3.
		

Crossrefs

Cf. A000142, A045754 (unsigned row sums), A049209 (row sums), A051188.
The b=1..6 triangles are: A008275 (Stirling1 triangle), A039683, A051141, A051142, A051150, A051151.

Programs

  • Magma
    [7^(n-k)*StirlingFirst(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 22 2022
    
  • Mathematica
    Table[7^(n-k)*StirlingS1[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
  • Sage
    flatten([[(-7)^(n-k)*stirling_number1(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 22 2022

Formula

T(n, m) = T(n-1, m-1) - 7*(n-1)*T(n-1, m) for n >= m >= 1, T(n, m) = 0 for n < m, T(n, 0) = 0 for n >= 1, and T(0, 0) = 1.
T(n, 1) = A051188(n-1).
Sum_{k=0..n} T(n, k) = (-1)^(n-1)*A049209(n-1).
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = A045754(n).
E.g.f. for m-th column of signed triangle: (log(1 + 7*x)/7)^m/m!.
T(n,m) = 7^(n-m)*S1(n,m) with the (signed) Stirling1 triangle S1(n,m) = A008275(n,m).
Bivariate e.g.f.-o.g.f.: Sum_{n,m >= 1} T(n,m)*x^n*y^m/n! = exp((y/7)*log(1 + 7*x)) - 1 = (1 + 7*x)^(y/7) - 1. - Petros Hadjicostas, Jun 07 2020
T(n, 0) = (-7)^(n-1)*A000142(n-1). - G. C. Greubel, Feb 22 2022

A049410 A triangle of numbers related to triangle A049325.

Original entry on oeis.org

1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
Offset: 1

Keywords

Comments

a(n,1)= A008279(3,n-1). a(n,m)=: S1(-3; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m)= A008275 (signed Stirling first kind), S1(2; n,m)= A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A000369(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
  {1};
  {3,1};
  {6,9,1};
  {6,51,18,1};
  ...
E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
		

Crossrefs

Row sums give A049426.

Programs

  • Mathematica
    rows = 10;
    t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    M = Inverse[Array[T, {rows, rows}]] // Abs;
    A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_transform from A265605]
    # Adds a column 1,0,0,0,... at the left side of the triangle.
    multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015

Formula

a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n

A051187 Generalized Stirling number triangle of the first kind.

Original entry on oeis.org

1, -8, 1, 128, -24, 1, -3072, 704, -48, 1, 98304, -25600, 2240, -80, 1, -3932160, 1122304, -115200, 5440, -120, 1, 188743680, -57802752, 6651904, -376320, 11200, -168, 1, -10569646080, 3425697792, -430309376, 27725824, -1003520, 20608, -224, 1
Offset: 1

Keywords

Comments

T(n,m)= R_n^m(a=0, b=8) in the notation of the given 1962 reference.
T(n,m) is a Jabotinsky matrix, i.e. the monic row polynomials E(n,x) := Sum_{m=1..n} T(n,m)*x^m = Product_{j=0..n-1} (x - 8*j), n >= 1, and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
From Petros Hadjicostas, Jun 07 2020: (Start)
For integers n, m >= 0 and complex numbers a, b (with b <> 0), the numbers R_n^m(a,b) were introduced by Mitrinovic (1961) and further examined by Mitrinovic and Mitrinovic (1962). Such numbers are related to the work of Nörlund (1924).
They are defined via Product_{r=0..n-1} (x - (a + b*r)) = Sum_{m=0..n} R_n^m(a,b)*x^m for n >= 0. As a result, R_n^m(a,b) = R_{n-1}^{m-1}(a,b) - (a + b*(n-1))*R_{n-1}^m(a,b) for n >= m >= 1 with R_1^0(a,b) = a, R_1^1(a,b) = 1, R_n^m(a,b) = 0 for n < m, and R_0^0(a,b) = 1.
With a = 0 and b = 1, we get the Stirling numbers of the first kind S1(n,m) = R_n^m(a=0, b=1) = A048994(n,m).
We have R_n^m(a,b) = Sum_{k=0}^{n-m} (-1)^k * a^k * b^(n-m-k) * binomial(m+k, k) * S1(n, m+k) for n >= m >= 0.
For the current array, T(n,m) = R_n^m(a=0, b=8) but with no zero row or column. (End)

Examples

			Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
          1;
         -8,         1;
        128,       -24,       1;
      -3072,       704,     -48,       1;
      98304,    -25600,    2240,     -80,     1;
   -3932160,   1122304, -115200,    5440,  -120,    1;
  188743680, -57802752, 6651904, -376320, 11200, -168, 1;
  ...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 8*j) = 128*x - 24*x^2 + x^3.
		

Crossrefs

First (m=1) column sequence is: A051189(n-1).
Row sums (signed triangle): A049210(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A045755(n).
The b=1..7 triangles are: A008275 (Stirling1 triangle), A039683, A051141, A051142, A051150, A051151, A051186.

Formula

T(n, m) = T(n-1, m-1) - 8*(n-1)*T(n-1, m) for n >= m >= 1; T(n, m) := 0 for n < m; T(n, 0) := 0 for n >= 1; T(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 8*x)/8)^m/m!.
From Petros Hadjicostas, Jun 07 2020: (Start)
T(n,m) = 8^(n-m)*Stirling1(n,m) = 8^(n-m)*A048994(n,m) = 8^(n-m)*A008275(n,m) for n >= m >= 1.
Bivariate e.g.f.-o.g.f.: Sum_{n,m >= 1} T(n,m)*x^n*y^m/n! = exp((y/8)*log(1 + 8*x)) - 1 = (1 + 8*x)^(y/8) - 1. (End)

A039647 Related to A000032 (Lucas numbers): (n-1)!*L(n).

Original entry on oeis.org

1, 3, 8, 42, 264, 2160, 20880, 236880, 3064320, 44634240, 722131200, 12853209600, 249559833600, 5249378534400, 118911189196800, 2886037330176000, 74715282690048000, 2055161959538688000, 59855791774851072000, 1840125433884401664000, 59547709552131440640000
Offset: 1

Keywords

Comments

Number of possible well-colored circuits.

Crossrefs

a(n) = A039692(n, 1) (first column of Fibonacci Jabotinsky-triangle).

Programs

  • Mathematica
    nn=19;Drop[Range[0,nn]!CoefficientList[Series[Log[1/(1-x-x^2)],{x,0,nn}],x],1] (* Geoffrey Critzer, Jul 01 2013 *)

Formula

a(n) = (n-1)!*L(n), L(n) := A000032(n); E.g.f.: -log(1-x-x^2). Also a(n)/n! = sum(binomial(n-j, j)/(n-j), j=0..floor(n/2)).
a(n) = (n-1)*(a(n-1)+(n-2)*a(n-2)), for n > 2. - Christian Krause, Oct 15 2023

A075505 Stirling2 triangle with scaled diagonals (powers of 10).

Original entry on oeis.org

1, 10, 1, 100, 30, 1, 1000, 700, 60, 1, 10000, 15000, 2500, 100, 1, 100000, 310000, 90000, 6500, 150, 1, 1000000, 6300000, 3010000, 350000, 14000, 210, 1, 10000000, 127000000, 96600000, 17010000, 1050000, 26600, 280, 1
Offset: 1

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(10*z) - 1)*x/10) - 1.

Examples

			[1]; [10,1]; [100,30,1]; ...; p(3,x) = x(100 + 30*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*        1
*       10         1
*      100        30        1
*     1000       700       60        1
*    10000     15000     2500      100       1
*   100000    310000    90000     6500     150     1
*  1000000   6300000  3010000   350000   14000   210   1
* 10000000 127000000 96600000 17010000 1050000 26600 280 1
(End)
		

Crossrefs

Row sums are A075509.
Cf. A075504.

Programs

  • Mathematica
    Flatten[Table[10^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(10^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (10^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*10)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 10m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m} (1-10k*x), m >= 1.
E.g.f. for m-th column: (((exp(10x)-1)/10)^m)/m!, m >= 1.
Previous Showing 21-30 of 36 results. Next