cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A040380 Continued fraction for sqrt(401).

Original entry on oeis.org

20, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40
Offset: 0

Views

Author

Keywords

Examples

			20 + 1/(40 + 1/(40 + 1/(40 + 1/(40 + ...)))) = sqrt(401).
		

Crossrefs

Cf. A041760/A041761 (convergents).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(401)),confrac);

Formula

From Elmo R. Oliveira, Feb 15 2024: (Start)
a(n) = 40 for n >= 1.
G.f.: 20*(1+x)/(1-x).
E.g.f.: 40*exp(x) - 20.
a(n) = 20*A040000(n) = 10*A040002(n) = 5*A040012(n). (End)

A040462 Continued fraction for sqrt(485).

Original entry on oeis.org

22, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44
Offset: 0

Views

Author

Keywords

Examples

			22 + 1/(44 + 1/(44 + 1/(44 + 1/(44 + ...)))) = sqrt(485).
		

Crossrefs

Cf. A041924/A041925 (convergents).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(485)),confrac);

Formula

From Elmo R. Oliveira, Feb 15 2024: (Start)
a(n) = 44 for n >= 1.
G.f.: 22*(1+x)/(1-x).
E.g.f.: 44*exp(x) - 22.
a(n) = 22*A040000(n) = 11*A040002(n) = 2*A040110(n). (End)

A040650 Continued fraction for sqrt(677).

Original entry on oeis.org

26, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52
Offset: 0

Views

Author

Keywords

Examples

			26 + 1/(52 + 1/(52 + 1/(52 + 1/(52 + ...)))) = sqrt(677).
		

Crossrefs

Cf. A042300/A042301 (convergents).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(677)),confrac);

Formula

From Elmo R. Oliveira, Feb 15 2024: (Start)
a(n) = 52 for n >= 1.
G.f.: 26*(1+x)/(1-x).
E.g.f.: 52*exp(x) - 26.
a(n) = 26*A040000(n) = 13*A040002(n) = 2*A040156(n). (End)

A040756 Continued fraction for sqrt(785).

Original entry on oeis.org

28, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56
Offset: 0

Views

Author

Keywords

Examples

			28 + 1/(56 + 1/(56 + 1/(56 + 1/(56 + ...)))) = sqrt(785).
		

Crossrefs

Cf. A042512/A042513 (convergents).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(785)),confrac);
  • Mathematica
    Block[{$MaxExtraPrecision =1000},ContinuedFraction[Sqrt[785],70]] (* or *) PadRight[{28},70,56] (* Harvey P. Dale, May 09 2012 *)

Formula

From Elmo R. Oliveira, Feb 16 2024: (Start)
a(n) = 56 for n >= 1.
G.f.: 28*(1+x)/(1-x).
E.g.f.: 56*exp(x) - 28.
a(n) = 28*A040000(n) = 14*A040002(n) = 7*A040012(n). (End)

A255176 a(n) = H_n(2,2) where H_n is the n-th hyperoperator.

Original entry on oeis.org

3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 0

Views

Author

Natan Arie Consigli, Feb 25 2015

Keywords

Comments

See A054871 for definitions and key links.
Also, decimal expansion of 31/90. - Bruno Berselli, Mar 18 2015
Essentially the same as A010709, A040002, A113311, A123932, and A151798. - R. J. Mathar, Mar 20 2015
Remainder of the Euclidean division when 10^(10^n) is divided by 7 (proof by induction for n >= 1) [see reference Julien Freslon & Jérôme Poineau]; example: 10^(10^1) = 1428571428 * 7 + 4. - Bernard Schott, Aug 28 2020

Examples

			a(0) = H_0(2,2) = 2+1 = 3.
a(1) = H_1(2,2) = 2+2 = 4.
a(2) = H_2(2,2) = 2*2 = 4.
a(3) = H_3(2,2) = 2^2 = 4.
a(n) = H_n(2,2) = H_{n-1}(2,H_n(2,1)) = H_{n-1}(2,2) = 4, for n>1.
		

References

  • Julien Freslon & Jérôme Poineau, Les 100 exercices-types de mathématiques: MPSI/PCSI/PTSI, EdiScience, 2007, Exercice 11.2, page 242.

Crossrefs

Formula

G.f.: (3 + x)/(1 - x). - Bruno Berselli, Mar 18 2015
a(n) = 10^(10^n) mod 7. - Bernard Schott, Aug 28 2020

Extensions

Edited by Danny Rorabaugh, Oct 20 2015

A040090 Continued fraction for sqrt(101).

Original entry on oeis.org

10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
Offset: 0

Views

Author

Keywords

Examples

			10 + 1/(20 + 1/(20 + 1/(20 + 1/(20 + ...)))) = sqrt(101).
		

Crossrefs

Cf. A248803 (decimal expansion), A041180/A041181 (convergents).

Programs

Formula

From Elmo R. Oliveira, Feb 11 2024: (Start)
a(n) = 20 = A010859(n) for n >= 1.
G.f.: 10*(1+x)/(1-x).
E.g.f.: 20*exp(x) - 10.
a(n) = 10*A040000(n) = 5*A040002(n) = 2*A040020(n). (End)

A040182 Continued fraction for sqrt(197).

Original entry on oeis.org

14, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28
Offset: 0

Views

Author

Keywords

Examples

			14 + 1/(28 + 1/(28 + 1/(28 + 1/(28 + ...)))) = sqrt(197).
		

Crossrefs

Cf. A041364/A041365 (convergents).

Programs

Formula

From Elmo R. Oliveira, Feb 13 2024: (Start)
a(n) = 28 for n >= 1.
G.f.: 14*(1+x)/(1-x).
E.g.f.: 28*exp(x) - 14.
a(n) = 14*A040000(n) = 7*A040002(n) = 2*A040042(n). (End)

A040240 Continued fraction for sqrt(257).

Original entry on oeis.org

16, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
Offset: 0

Views

Author

Keywords

Examples

			16 + 1/(32 + 1/(32 + 1/(32 + 1/(32 + ...)))) = sqrt(257).
		

Crossrefs

Cf. A041480/A041481 (convergents).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(257)),confrac);
  • Mathematica
    Block[{$MaxExtraPrecision=1000}, ContinuedFraction[Sqrt[257],100]] (* or *) PadRight[{16},100,{32}] (* Harvey P. Dale, Aug 15 2021 *)
  • PARI
    a(n)=if(n,32,16) \\ Charles R Greathouse IV, Apr 08 2012

Formula

From Elmo R. Oliveira, Feb 13 2024: (Start)
a(n) = 32 for n >= 1.
G.f.: 16*(1+x)/(1-x).
E.g.f.: 32*exp(x) - 16.
a(n) = 16*A040000(n) = 8*A040002(n) = 4*A040012(n) = 2*A040056(n). (End)

A040552 Continued fraction for sqrt(577).

Original entry on oeis.org

24, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48
Offset: 0

Views

Author

Keywords

Examples

			24 + 1/(48 + 1/(48 + 1/(48 + 1/(48 + ...)))) = sqrt(577).
		

Crossrefs

Cf. A042104/A042105 (convergents).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(577)),confrac);

Formula

From Elmo R. Oliveira, Feb 15 2024: (Start)
a(n) = 48 for n >= 1.
G.f.: 24*(1+x)/(1-x).
E.g.f.: 48*exp(x) - 24.
a(n) = 24*A040000(n) = 12*A040002(n) = 8*A040006(n). (End)

A040930 Continued fraction for sqrt(962).

Original entry on oeis.org

31, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62, 62
Offset: 0

Views

Author

Keywords

Examples

			31 + 1/(62 + 1/(62 + 1/(62 + 1/(62 + ...)))) = sqrt(962).
		

Crossrefs

Cf. A042860/A042861 (convergents).
Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870 (contfrac(sqrt(901)) = (30,60,60,...)).

Programs

  • Maple
    with(numtheory): Digits := 300: convert(evalf(sqrt(962)),confrac);
  • Mathematica
    PadRight[{31},100,62] (* Harvey P. Dale, Sep 18 2012 *)

Formula

G.f.: 31*(1+x)/(1-x). - Colin Barker, Aug 11 2012
From Elmo R. Oliveira, Feb 16 2024: (Start)
a(n) = 62 for n >= 1.
E.g.f.: 62*exp(x) - 31.
a(n) = 31*A040000(n). (End)
Previous Showing 11-20 of 26 results. Next