cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 56 results. Next

A345077 a(0) = 1; a(n) = 6 * Sum_{k=1..n} binomial(n,k) * a(k-1).

Original entry on oeis.org

1, 6, 48, 414, 3876, 38946, 416808, 4722774, 56379756, 706236426, 9250945008, 126342991614, 1794459834036, 26445918969906, 403610795535288, 6367606516836774, 103683034842399996, 1739933892930544986, 30052751213767045248, 533635421576480845134, 9730601644306627161156
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 6 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; A[] = 0; Do[A[x] = 1 + 6 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 6 * x * A(x/(1 - x)) / (1 - x)^2.

A345078 a(0) = 1; a(n) = 7 * Sum_{k=1..n} binomial(n,k) * a(k-1).

Original entry on oeis.org

1, 7, 63, 609, 6349, 70693, 835051, 10408335, 136290371, 1867933865, 26712000161, 397487932457, 6140285212915, 98264596199651, 1626101133819855, 27779382241071769, 489188555650420493, 8867962363328434205, 165284825277198034611, 3163858565498874214559, 62133992974174011252635
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 7 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; A[] = 0; Do[A[x] = 1 + 7 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 7 * x * A(x/(1 - x)) / (1 - x)^2.

A345081 a(0) = 1; a(n) = 8 * Sum_{k=1..n} binomial(n,k) * a(k-1).

Original entry on oeis.org

1, 8, 80, 856, 9824, 119912, 1547376, 21007992, 298874496, 4440618120, 68706037904, 1104224971416, 18394192882336, 316974497161384, 5640790811468976, 103503851543959224, 1955546066369814208, 37994858794236710088, 758272809049577019600, 15527828509092566876888
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = 8 Sum[Binomial[n, k] a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 19}]
    nmax = 19; A[] = 0; Do[A[x] = 1 + 8 x A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 + 8 * x * A(x/(1 - x)) / (1 - x)^2.

A352682 Array read by ascending antidiagonals. A(n, k) = (n-1)*Gould(k-1) + Bell(k) for n >= 0 and k >= 1, A(n, 0) = 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 3, 3, 5, 6, 1, 4, 4, 8, 15, 21, 1, 5, 5, 11, 24, 52, 82, 1, 6, 6, 14, 33, 83, 203, 354, 1, 7, 7, 17, 42, 114, 324, 877, 1671, 1, 8, 8, 20, 51, 145, 445, 1400, 4140, 8536, 1, 9, 9, 23, 60, 176, 566, 1923, 6609, 21147, 46814
Offset: 0

Views

Author

Peter Luschny, Mar 28 2022

Keywords

Comments

The array defines a family of Bell-like sequences. The case n = 1 are the Bell numbers A000110, case n = 0 is A032347 and case n = 2 is A038561. The n-th sequence r(k) = T(n, k) is defined for k >= 0 by the recurrence r(k) = Sum_{j=0..k-1} binomial(k-1, j)*r(j) with r(0) = 1 and r(1) = n.

Examples

			Array starts:
n\k 0, 1,  2,  3,  4,   5,    6,    7,     8,      9, ...
---------------------------------------------------------
[0] 1, 0,  1,  2,  6,  21,   82,  354,  1671,   8536, ... A032347
[1] 1, 1,  2,  5, 15,  52,  203,  877,  4140,  21147, ... A000110
[2] 1, 2,  3,  8, 24,  83,  324, 1400,  6609,  33758, ... A038561
[3] 1, 3,  4, 11, 33, 114,  445, 1923,  9078,  46369, ... A038559
[4] 1, 4,  5, 14, 42, 145,  566, 2446, 11547,  58980, ... A352683
[5] 1, 5,  6, 17, 51, 176,  687, 2969, 14016,  71591, ...
[6] 1, 6,  7, 20, 60, 207,  808, 3492, 16485,  84202, ...
[7] 1, 7,  8, 23, 69, 238,  929, 4015, 18954,  96813, ...
[8] 1, 8,  9, 26, 78, 269, 1050, 4538, 21423, 109424, ...
[9] 1, 9, 10, 29, 87, 300, 1171, 5061, 23892, 122035, ...
		

Crossrefs

Diagonals: A352684 (main).
Cf. A040027 (Gould), A352686 (subtriangle).
Compare A352680 for a similar array based on the Catalan numbers.

Programs

  • Julia
    function BellRow(m, len)
        a = m; P = BigInt[1]; T = BigInt[1]
        for n in 1:len
            T = vcat(T, a)
            P = cumsum(vcat(a, P))
            a = P[end]
        end
    T end
    for n in 0:9 BellRow(n, 9) |> println end
  • Maple
    alias(PS = ListTools:-PartialSums):
    BellRow := proc(n, len) local a, k, P, T;
    a := n; P := [1]; T := [1];
    for k from 1 to len-1 do
       T := [op(T), a]; P := PS([a, op(P)]); a := P[-1] od;
    T end: seq(lprint(BellRow(n, 10)), n = 0..9);
  • Mathematica
    nmax = 10;
    BellRow[n_, len_] := Module[{a, k, P, T}, a = n; P = {1}; T = {1};
       For[k = 1, k <= len - 1, k++,
          T = Append[T, a]; P = Accumulate[Join[{a}, P]]; a = P[[-1]]];
       T];
    rows = Table[BellRow[n, nmax + 1], {n, 0, nmax}];
    A[n_, k_] := rows[[n + 1, k + 1]];
    Table[A[n - k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 15 2024, after Peter Luschny *)

Formula

Given a list T let PS(T) denote the list of partial sums of T. Given two list S and T let [S, T] denote the concatenation of the lists. Further let P[end] denote the last element of the list P. Row n of the array with length k can be computed by the following procedure:
A = [n], P = [1], R = [1];
Repeat k-1 times: R = [R, A], P = PS([A, P]), A = [P[end]];
Return R.

A038561 Left-hand border of triangle A046937.

Original entry on oeis.org

1, 2, 3, 8, 24, 83, 324, 1400, 6609, 33758, 185136, 1083233, 6726366, 44130128, 304741623, 2207682188, 16729947276, 132281116715, 1088831511000, 9311082630620, 82569723552561, 758057178490082, 7194283782101844, 70481938088367569
Offset: 0

Views

Author

Keywords

Comments

For n>1: a(n) is the number of entries in the last blocks of all set partitions of [n]. a(3) = 8 because the number of entries in the last blocks of all set partitions of [3] (123, 12|3, 13|2, 1|23, 1|2|3) is 3+1+1+2+1 = 8. - Alois P. Heinz, May 08 2017

References

  • H. W. Gould, A linear binomial recurrence and the Bell numbers and polynomials, preprint, 1998

Crossrefs

A040027(n) + B(n), where B(n) = Bell numbers A000110.
Column k=1 of A286416 (for n>1).

Programs

  • Haskell
    a038561 = head . a046937_row  -- Reinhard Zumkeller, Jan 06 2014
  • Maple
    A038561List := proc(m) local A, P, n; A := [1,2]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([A[-1], op(P)]);
    A := [op(A), P[-1]] od; A end: A038561List(24); # Peter Luschny, Mar 24 2022
  • Mathematica
    a[0, 0] = 1; a[1, 0] = 2; a[n_, 0] := a[n-1, n-1]; a[n_, k_] := a[n, k] = a[n, k-1] + a[n-1, k-1]; a[n_] := a[n, 0]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 06 2013 *)

Formula

G.f. A(x) satisfies: A(x) = 1 + x * (1 + A(x/(1 - x)) / (1 - x)). - Ilya Gutkovskiy, Jun 30 2020

A123346 Mirror image of the Bell triangle A011971, which is also called the Pierce triangle or Aitken's array.

Original entry on oeis.org

1, 2, 1, 5, 3, 2, 15, 10, 7, 5, 52, 37, 27, 20, 15, 203, 151, 114, 87, 67, 52, 877, 674, 523, 409, 322, 255, 203, 4140, 3263, 2589, 2066, 1657, 1335, 1080, 877, 21147, 17007, 13744, 11155, 9089, 7432, 6097, 5017, 4140, 115975, 94828, 77821, 64077, 52922, 43833, 36401, 30304, 25287, 21147
Offset: 0

Views

Author

N. J. A. Sloane, Oct 14 2006

Keywords

Comments

a(n,k) is k-th difference of Bell numbers, with a(n,1) = A000110(n) for n>0, a(n,k) = a(n,k-1) - a(n-1, k-1), k<=n, with diagonal (k=n) also equal to Bell numbers (n>=0). - Richard R. Forberg, Jul 13 2013
From Don Knuth, Jan 29 2018: (Start)
If the offset here is changed from 0 to 1, then we can say:
a(n,k) is the number of equivalence classes of [n] in which 1 not equiv to 2, ..., 1 not equiv to k.
In Volume 4A, page 418, I pointed out that a(n,k) is the number of set partitions in which k is the smallest of its block.
And in exercise 7.2.1.5--33, I pointed out that a(n,k) is the number of equivalence relations in which 1 not equiv to 2, 2 not equiv to 3, ..., k-1 not equiv to k. (End)

Examples

			Triangle begins:
    1
    2   1
    5   3   2
   15  10   7  5
   52  37  27 20 15
  203 151 114 87 67 52
  ...
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.5 (p. 418).

Crossrefs

Cf. A011971. Borders give Bell numbers A000110. Diagonals give A005493, A011965, A011966, A011968, A011969, A046934, A011972, A094577, A095149, A106436, A108041, A108042, A108043.

Programs

  • Haskell
    a123346 n k = a123346_tabl !! n !! k
    a123346_row n = a123346_tabl !! n
    a123346_tabl = map reverse a011971_tabl
    -- Reinhard Zumkeller, Dec 09 2012
    
  • Mathematica
    a[n_, k_] := Sum[Binomial[n - k, i - k] BellB[i], {i, k, n}];
    Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 03 2018 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A123346_list = blist = [1]
    for _ in range(2*10**2):
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        A123346_list += reversed(blist)
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n,k) = Sum_{i=k..n} binomial(n-k,i-k)*Bell(i). - Vladeta Jovovic, Oct 14 2006

Extensions

More terms from Alexander Adamchuk and Vladeta Jovovic, Oct 14 2006

A351756 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - 2*x)) / (1 - 2*x)^2.

Original entry on oeis.org

1, 1, 5, 23, 119, 709, 4749, 35031, 281271, 2438565, 22673021, 224739303, 2363075191, 26246762213, 306830932749, 3763323446487, 48292462190743, 646763208308421, 9020009372203965, 130737162573013159, 1965798562640921879, 30613694640191725381
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1 + x A[x/(1 - 2 x)]/(1 - 2 x)^2 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k - 1] 2^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k-1) * 2^(k-1) * a(n-k).

A298804 Triangle T(n,k) (1 <= k <= n) read by rows: A046936 with rows reversed and offset changed to 1.

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 9, 6, 4, 3, 31, 22, 16, 12, 9, 121, 90, 68, 52, 40, 31, 523, 402, 312, 244, 192, 152, 121
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2018, following a suggestion from Don Knuth, Jan 29 2018

Keywords

Comments

This is another version of Moser's version (A046936) of Aitken's array (A011971).
Although offset 0 is better for A011971 and A046936, for this version offset 1 is more appropriate.
Comments from Don Knuth, Jan 29 2018 (Start):
a(n,k) is the number of set partitions (i.e. equivalence classes) in which (i) 1 is not equivalent to 2, ..., nor k; and (ii) the last part, when parts are ordered by their smallest element, has size 1; (iii) that last part isn't simply "1". (Equivalently, n>1.)
It's not difficult to prove this characterization of a(k,n). For example, if we know that there are 22 partitions of {1,2,3,4,5} with 1 inequivalent to 2, and 6 partitions of {1,2,3,4} with
1 inequivalent to 2, then there are 6 partitions of {1,2,3,4,5} with 1 inequivalent to 2 and 1 equivalent to 3. Hence there are 16 with 1 equivalent to neither 2 nor 3.
The same property, but leaving out conditions (ii) and (iii), characterizes Pierce's triangular array A123346. (End)

Examples

			Triangle begins:
0,
1, 1,
3, 2, 1,
9, 6, 4, 3,
31, 22, 16, 12, 9,
121, 90, 68, 52, 40, 31
523, 402, 312, 244, 192, 152, 121
...
		

Crossrefs

A351757 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - 3*x)) / (1 - 3*x)^2.

Original entry on oeis.org

1, 1, 7, 43, 289, 2239, 19699, 192025, 2042971, 23520715, 291099349, 3849621019, 54110928355, 804827487493, 12619011606775, 207885167529523, 3587864566792753, 64705561315720135, 1216574535057705979, 23797327657083197113, 483390249416359706995
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x/(1 - 3 x)]/(1 - 3 x)^2 + O[x]^(nmax + 1) // Normal,nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k - 1] 3^(k - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k-1) * 3^(k-1) * a(n-k).

A342196 a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k)^2 * a(k-1).

Original entry on oeis.org

1, 1, 5, 23, 155, 1355, 14371, 183911, 2781283, 48726355, 976903875, 22183097191, 565060532965, 16016170519017, 501714014484813, 17265124180702953, 649178961366102597, 26544344366333824055, 1175291769917975444817, 56133021061270139242637, 2881893164859601701738005
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^2 a[k - 1], {k, 1, n}]; Table[a[n], {n, 0, 20}]
Previous Showing 21-30 of 56 results. Next