cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A244520 a(n) = A080715(n+1) / 2.

Original entry on oeis.org

1, 3, 5, 11, 15, 21, 29, 35, 39, 41, 51, 65, 95, 105, 155, 165, 179, 191, 221, 231, 239, 281, 329, 371, 419, 431, 485, 519, 611, 641, 659, 809, 905, 935, 989, 1019, 1031, 1049, 1121, 1199, 1229, 1289, 1451, 1469, 1481, 1509, 1541, 1661, 1821, 1931, 2109, 2129, 2141, 2339, 2549, 2795, 2969, 3021, 3039, 3189, 3299, 3329
Offset: 1

Views

Author

Joerg Arndt, Jul 10 2014

Keywords

Comments

Numbers k such that 2d + k/d is prime for every d|k. Such k must be an odd squarefree number. Primes in the sequence are A045536. - Thomas Ordowski, Nov 16 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 3400, 2], Function[n, AllTrue[Divisors@ n, PrimeQ[2 # + n/#] &]]] (* Michael De Vlieger, Nov 18 2017 *)
  • PARI
    is_ok(n)=n=2*n;fordiv(n,d,if(!isprime(d+n/d),return(0)));return(1);
    for(n=1,10^4,if(is_ok(n),print1(n,", ")));

Formula

A088627(a(n)) = A000005(a(n)) = 2^m. - Thomas Ordowski, Nov 16 2017

A307833 Smallest k > 1 such that A014574(n)*k is adjacent to a prime.

Original entry on oeis.org

2, 2, 2, 2, 2, 2, 3, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 2, 4, 3, 3, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 2, 2, 3, 6, 3, 2, 2, 2, 3, 4, 2, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 4, 2, 3, 2, 3, 2, 2, 4, 3, 2, 2, 5, 2, 4, 4, 4, 4, 3, 2, 5, 2, 3, 4, 2, 4, 4, 2, 2, 2, 4, 2, 6, 4, 2, 2, 5, 4, 6
Offset: 1

Views

Author

Dmitry Kamenetsky, May 01 2019

Keywords

Comments

It is perhaps surprising that the values in this sequence are so small. For n < 8000 the largest value of a(n) is 20, which occurs for n = 4928. Also for n < 8000, a(n) is 2 on 2449 occasions.
a(n)=2 if and only if A014574(n)+1 is in A038869 or A014574(n)-1 is in A045536. - Robert Israel, Jul 17 2019

Examples

			72*5 = 360, which is adjacent to the prime 359, so a(8) = 5.
		

Crossrefs

Programs

  • Maple
    P:= {seq(ithprime(i),i=1..10^4)}:
    A014574:= sort(convert(map(t -> t+1, P intersect map(`-`,P,2)),list)):
    f:= proc(m) local k;
      for k from 2 do
        if isprime(k*m-1) or isprime(k*m+1) then return k fi
      od
    end proc:
    map(f, A014574); # Robert Israel, Jul 17 2019
  • Mathematica
    primeNearQ[n_] := AnyTrue[{-1, 1} + n, PrimeQ]; twinMidQ[n_] := AllTrue[{-1, 1} + n, PrimeQ]; f[n_] := Module[{k = 2}, While[! primeNearQ[k*n], k++]; k]; f /@ Select[Range[10^4], twinMidQ] (* Amiram Eldar, Jul 05 2019 *)
  • PARI
    isok2(n) = isprime(n-1) && isprime(n+1);
    k(n) = my(k=2); while (! (isprime(n*k-1) || isprime(n*k+1)), k++); k;
    lista(nn) = for (n=1, nn, if (isok2(n), print1(k(n), ", "))); \\ Michel Marcus, May 01 2019

Formula

a(n) = A309120(A014574(n)). - Robert Israel, Jul 17 2019

A347934 Primes p of the form k^2 + 1 such that p+2 and 2p+1 are also prime.

Original entry on oeis.org

5, 25601, 193601, 1144901, 1464101, 4326401, 6100901, 12390401, 23522501, 72931601, 127012901, 245862401, 256960901, 351937601, 441840401, 732784901, 802588901, 951722501, 1621672901, 2024100101, 2070250001, 2217468101, 2219352101, 2428518401, 2930056901, 2963713601
Offset: 1

Views

Author

Angad Singh, Sep 20 2021

Keywords

Comments

All primes (except 5) in the sequence are of the form 100*k^2 + 1.

Crossrefs

Intersection of A002496 and A045536.

Programs

  • Mathematica
    Select[Range[50000]^2 + 1, AllTrue[{#, # + 2, 2*# + 1}, PrimeQ] &] (* Amiram Eldar, Sep 20 2021 *)

A106060 Primes p such that 1*p + 8 and 8*p + 1 are primes.

Original entry on oeis.org

5, 11, 29, 71, 101, 131, 149, 269, 401, 431, 449, 479, 491, 599, 761, 821, 929, 1229, 1289, 1559, 1571, 1601, 1619, 1871, 2081, 2129, 2339, 2531, 2549, 2609, 2741, 3041, 3209, 3299, 3461, 3719, 3761, 4289, 5189, 5861, 6269, 6359, 6569, 6701, 6959, 7211
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Comments

Cf. A045536: Primes p such that 1*p+2 and 2*p+1 are prime; A007693: Numbers n such that n and 6*n+1 are primes.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10000) | IsPrime(p+8) and IsPrime(8*p+1)]; // Vincenzo Librandi, Nov 13 2010
  • Mathematica
    Select[Prime[Range[220]], PrimeQ[8#+1]&&PrimeQ[1#+8]&]

A155189 Square-weak primes.

Original entry on oeis.org

3, 5, 7, 13, 19, 23, 31, 43, 47, 53, 61, 73, 83, 89, 103, 109, 113, 131, 139, 151, 157, 167, 173, 181, 193, 199, 211, 229, 233, 241, 257, 263, 271, 283, 293, 313, 317, 337, 349, 353, 359, 373, 383, 389, 401, 409, 421, 433, 443, 449, 463, 467, 491, 503, 509, 523
Offset: 1

Views

Author

Keywords

Comments

5^2 = 25 < 29 = (3^2+7^2)/2, ...

Crossrefs

Programs

  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];p2=Prime[n+2];If[p1^2<(p0^2+p2^2)/2,AppendTo[lst,p1]],{n,5!}];lst
    Select[Partition[Prime[Range[100]],3,1],#[[2]]^2<(#[[1]]^2+#[[3]]^2)/2&][[All,2]] (* Harvey P. Dale, May 01 2021 *)

A306407 Brazilian primes p such that p+2 and 2p+1 are also prime.

Original entry on oeis.org

78914411, 7294932341, 119637719305001, 937391863673981, 16737518900352251, 54773061508358111, 417560366367249821, 1103799812221103741, 1515990022247085221, 2748614000294776541, 2805758307714748481, 16359900662260777211, 19024521721109192201, 126048913814465881331, 138996334987487396981
Offset: 1

Views

Author

Bernard Schott, Apr 05 2019

Keywords

Comments

The initial terms of this sequence are of the form (11111)_b. The successive bases b are 94, 292, 3307, 5533, 11374, ...
The first term which is not of this form has 43 digits: it is 1137259672818014782224246589454763146442851 = 1 + 16054 + ... + 16054^9 + 16054^10 = (11111111111)_16054 with a string of eleven 1's.
Sophie Germain primes and lesser twins which are Brazilian both have the same property: if p = (b^q - 1)/(b - 1) is a term, necessarily q (prime) == 5 (mod 6) and b == 1 (mod 3). The smallest terms for the first pairs (q,b) are (5,94), (11,16054), (17,3247).
Intersection of A306845 and A306849.
Intersection of A045536 and A085104.

Examples

			The prime 78914411 is a term, because 78914411 = 1 + 94 + 94^2 + 94^3 + 94^4 is a Brazilian prime, 78914411 + 2 = 78914413 is prime and 2 * 78914411 + 1 = 157828823 is prime. The prime 78914411 is Brazilian, the lesser of a pair of twin primes and also a Sophie Germain prime.
		

Crossrefs

Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).
Cf. A045536 (intersection of A001359 and A005384).
Cf. A085104 (Brazilian primes).
Cf. A306845 (Sophie Germain Brazilian primes), A306849 (lesser of twin primes which is Brazilian).

Programs

  • PARI
    brazilp(N)=forprime(K=5, #binary(N+1)-1, for(n=4, sqrtnint(N-1, K-1), if((K%6==5)&&(n%3==1),if(isprime((n^K-1)/(n-1))&&isprime((n^K-1)/(n-1)+2)&&isprime(2*(n^K-1)/(n-1)+1), print1((n^K-1)/(n-1), ", "))))) \\ Davis Smith, Apr 06 2019

A353702 Composite k such that tau(k') = (tau(k))', where tau(k) is the number of divisors of k (A000005) and k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

12, 15, 21, 26, 27, 33, 38, 57, 62, 69, 74, 85, 88, 93, 106, 108, 129, 133, 134, 145, 166, 177, 178, 205, 213, 217, 218, 226, 237, 248, 249, 253, 254, 262, 265, 278, 309, 314, 328, 362, 375, 376, 393, 398, 417, 422, 424, 445, 459, 466, 469, 488, 489, 493, 502
Offset: 1

Views

Author

Marius A. Burtea, May 07 2022

Keywords

Comments

Since for any prime number p, p' = 1 and (tau(p))' = 2' = 1 = tau(1) = tau (p'), the sequence requires only composite numbers that satisfy the given relation.
For p in A092109 the number m = 3*p is a term. Indeed, (tau(m))' = (tau(3*p))' = 4' = 4 and tau(m') = tau((3*p)') = tau(p + 3) = 4, so m is a term.
If p is in A045536 then p, p + 2 and 2*p + 1 are prime numbers and m = 3*(2*p + 1) is a term. Indeed, tau(m') = tau((3*(2*p + 1))') = tau(2*p + 4) = tau(2*(p+2)) = 4 and (tau(m))' = (tau((3*(2*p + 1)))' = 4' = 4, so m is a term.
If k is in A174100 then the numbers 2*k + 1 and 6*k + 1 are prime numbers and the numbers m = 2*(6*k + 1) is a term. Indeed, (tau(m))' = (tau(2*(6*k + 1)) )' = 4' = 4 and tau(m') = tau(2*(6*k + 1))') = tau(6*k + 3) = tau(2*(2*k + 1)) = 4, so m is a term.

Examples

			12' = 16, (tau(12)) = 6' = 5 and tau(12') = tau(16) = tau(2^4) = 5, so 12 is a term.
15' = 8, (tau(15))’ = 4' = 4 and tau(15') = tau(8) = tau(2^3) = 4, so 15 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [p:p in [3..550]|not IsPrime(p) and  #Divisors(Floor(f(p))) eq Floor(f(#Divisors(p)))];
    
  • Maple
    isA353702 := proc(n)
        if not isprime(n) and numtheory[tau](A003415(n)) = A003415( numtheory[tau](n) ) then
            true ;
        else
            false;
        end if;
    end proc:
    for n from 2 to 1000 do
        if isA353702(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 05 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[500], CompositeQ[#] && DivisorSigma[0, d[#]] == d[DivisorSigma[0, #]] &] (* Amiram Eldar, May 07 2022 *)
  • PARI
    ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
    isok(k) = (k>1) && !isprime(k) && numdiv(ad(k)) == ad(numdiv(k)); \\ Michel Marcus, May 08 2022
Previous Showing 11-17 of 17 results.