cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A298951 Wieferich primes to base 22.

Original entry on oeis.org

13, 673, 1595813, 492366587, 9809862296159
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jan 30 2018

Keywords

Comments

Prime numbers p such that p^2 divides 22^(p-1) - 1.
Next term, if it exists, is larger than 8.72*10^13.
492366587 was found by Montgomery (cf. Montgomery, 1993). - Felix Fröhlich, Jan 30 2018

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), this sequence (b=22), A128669 (b=23), A306255 (b=26), A306256 (b=30).

Programs

  • PARI
    forprime(p=1, , if(Mod(22, p^2)^(p-1)==1, print1(p, ", ")))

A306255 Wieferich primes to base 26.

Original entry on oeis.org

3, 5, 71, 486999673, 6695256707
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 26^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), this sequence (b=26), A306256 (b=30).

Programs

  • Mathematica
    Select[Prime[Range[26*10^6]],PowerMod[26,#-1,#^2]==1&] (* The program generates the first 4 terms of the sequence. *) (* Harvey P. Dale, Aug 23 2024 *)
  • PARI
    forprime(p=2, , if(Mod(26, p^2)^(p-1)==1, print1(p, ", ")))

A306256 Wieferich primes to base 30.

Original entry on oeis.org

7, 160541, 94727075783
Offset: 1

Views

Author

Jianing Song, Feb 01 2019

Keywords

Comments

Prime numbers p such that p^2 divides 30^(p-1) - 1.
No more terms up to 9.8*10^13.

Crossrefs

Wieferich primes to base b: A001220 (b=2), A014127 (b=3), A123692 (b=5), A212583 (b=6), A123693 (b=7), A045616 (b=10), A111027 (b=12), A128667 (b=13), A234810 (b=14), A242741 (b=15), A128668 (b=17), A244260 (b=18), A090968 (b=19), A242982 (b=20), A298951 (b=22), A128669 (b=23), A306255 (b=26), this sequence (b=30).

Programs

  • PARI
    forprime(p=2, , if(Mod(30, p^2)^(p-1)==1, print1(p, ", ")))

A171928 Numbers k which divide the periodic part of the decimal expansion of 1/k.

Original entry on oeis.org

3, 6, 487, 1461, 4383, 13149, 56598313, 169794939
Offset: 1

Views

Author

Zhining Yang, Jan 05 2010

Keywords

Comments

There are two definitions of the periodic part: zeros may either begin or end the periodic part. For example, for 1/11 = 0.0909090..., the periodic part could be either 09 or 90. This sequence assumes that the zeros are at the beginning of the periodic part. See A179267 for the case of zeros at the end of the periodic part. The prime numbers in this sequence are in A045616. The three numbers following 487 are 3*487, 9*487, and 27*487. There are no other multiples of 487 here because 3 and 487 are the only prime factors of 10^486-1 that occur to a power greater than 1. - T. D. Noe, Jul 06 2010

Examples

			6 is a term because 1/6 = 0.166666... has periodic part 6, which is divisible by 6.
		

Crossrefs

Extensions

Example shortened by T. D. Noe, Jun 27 2010
Extended by T. D. Noe, Jul 06 2010

A247072 Smallest Wieferich prime (> sqrt(n)) in base n.

Original entry on oeis.org

2, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 487, 71, 2693, 863, 29, 29131, 1093, 46021, 5, 7, 281
Offset: 1

Views

Author

Eric Chen, Nov 16 2014

Keywords

Comments

a(n) = Smallest prime such that n appears in A143548. - Eric Chen, Nov 26 2014
The square of a(n) is the smallest squared prime that is a pseudoprime (> n) in base n; for example, a(2) = 1093, and 1093^2 = 1194649 is the smallest squared prime that is pseudoprime in base 2. - Eric Chen, Nov 26 2014
Is a(n) defined for all n? - Eric Chen, Nov 26 2014
Does every prime appear in this sequence? - Eric Chen, Nov 26 2014
a(22)..a(28) = {13, 13, 5, 20771, 71, 11, 19}, a(30)..a(46) = {7, 7, 1093, 233, 46145917691, 1613, 66161, 77867, 17, 8039, 11, 29, 23, 103, 229, 1283, 829}, a(48)..a(49) = {7, 491531}, a(51)..a(60) = {41, 461, 47, 19, 30109, 647, 47699, 131, 2777, 29}, a(62)..a(71) = {19, 23, 1093, 17, 89351671, 47, 19, 19, 13, 47}, a(74)..a(81) = {1251922253819, 17, 37, 32687, 43, 263, 13, 11}, a(83)..a(100) = {4871, 163, 11779, 68239, 1999, 2535619637, 13, 6590291053, 293, 727, 509, 11, 2137, 109, 2914393, 28627, 13, 487}; a(n) is currently unknown for n = {21, 29, 47, 50, 61, 72, 73, 82, 126, 132, 154, 186, 187, 188, 200, 203, 222, 231, 237, 301, 304, 309, 311, 327, 335, 347, 351, 355, 357, 435, 441, 454, 458, 496, 541, 542, 546, 554, 570, 593, 609, 610, 639, 640, 654, 662, 668, 674, 692, 697, 698, 701, 718, 724, 725, 727, 733, 743, 760, 772, 775, 777, 784, 798, 807, 808, 812, 829, 841, 858, 860, 871, 883, 912, 919, 944, 980, 983, 986, ...}. - Eric Chen, Nov 26 2014
a(21) > 3.4 * 10^13. - Eric Chen, Nov 26 2014

Examples

			a(12) = 2693 because the Wieferich primes to base 12 are 2693, 123653, ..., and 2693 is greater than sqrt(12), so a(12) = 2693.
a(17) = 46021 because the Wieferich primes to base 17 are 2, 3, 46021, 48947, 478225523351, ..., but neither 2 nor 3 is greater than sqrt(17), so a(17) = 46021.
		

Crossrefs

Programs

  • Mathematica
    a247072[n_] := Block[{p = Int[Sqrt[n]]+1}, While[!PrimeQ[p] || [p < 10^8 && PowerMod[n, p - 1, p^2] != 1], p++]; If[p == 10^8, 0, p]]; Table[ a247072[n], {n, 100}] (* Eric Chen, Nov 27 2014 *)
  • PARI
    a(n)=forprime(p=sqrtint(n)+1,,if(Mod(n^(p-1),p^2)==1,return(p)))
    n=1; while(n<101, print1(a(n), ", "); n++) \\ Charles R Greathouse IV, Nov 16 2014

A265012 a(n) = 10^(prime(n)-1) mod prime(n)^2.

Original entry on oeis.org

2, 1, 0, 8, 12, 53, 137, 286, 185, 378, 466, 1037, 1518, 1033, 2022, 637, 532, 794, 2011, 3551, 1169, 1660, 2574, 3561, 6597, 5152, 7829, 4816, 10356, 9041, 382, 7206, 16578, 17932, 19073, 12383, 20725, 11248, 21377, 16609, 21660, 21178, 20820, 4826, 37234
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2015

Keywords

Examples

			a(2) = a(93) = a(3371851) = 1;
prime(2) = 3; prime(93) = 487; prime(3371851) = 56598313.
		

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Moduli (powerMod)
    a265012 n = powerMod 10 (p - 1) (p ^ 2) where p = a000040 n
    
  • Mathematica
    PowerMod[10,#-1 ,#^2]&/@Prime[Range[50]] (* Harvey P. Dale, Feb 10 2016 *)
  • PARI
    a(n) = lift(Mod(10, prime(n)^2)^(prime(n)-1)); \\ Michel Marcus, Jan 22 2022

Formula

a(n) < A001248(n);
a(A049084(A045616(n))) = 1.

A306449 Pseudoprimes to base 10 that are not squarefree.

Original entry on oeis.org

9, 99, 657, 909, 1233, 11169, 13833, 19503, 20961, 23661, 51291, 69921, 90009, 99297, 109737, 139329, 203841, 237169, 256059, 321201, 339021, 346473, 460251, 475641, 686169, 760761, 927081, 1080801, 1621089, 1679931, 3100833, 3316941, 3845601, 3846051, 3942657, 4095081, 4281057
Offset: 1

Views

Author

Jianing Song, Feb 16 2019

Keywords

Comments

Numbers k that are not squarefree and satisfy 10^(k-1) == 1 (mod k).
Any term is divisible by the square of a base-10 Wieferich prime (A045616 = {3, 487, 56598313, ...}).
Intersection of A005939 and A013929.

Crossrefs

Pseudoprimes to base b that are not squarefree: A158358 (b=2), A244065 (b=3), A243010 (b=5), A243089 (b=7), A243090 (b=8), A306448 (b=9), this sequence (b=10).
Cf. also A045616, A005939, A013929.

Programs

  • PARI
    for(n=1, 10^6, if(Mod(10, n)^(n-1)==1 && !issquarefree(n), print1(n, ", ")))

A179267 Numbers n which divide the periodic part (with zeros at end) of the decimal expansion of 1/n.

Original entry on oeis.org

3, 6, 487, 974, 1461, 2435, 2922, 4383, 4870, 7305, 8766, 12175, 13149, 14610, 17532, 21915, 24350, 26298, 29220, 36525, 43830, 48700, 52596, 65745, 73050, 87660, 109575, 131490, 146100, 219150, 262980, 328725, 438300, 657450, 1095750
Offset: 1

Views

Author

T. D. Noe, Jul 06 2010

Keywords

Comments

There are two definitions of the periodic part: zeros may either begin or end the periodic part. For example, for 1/11 = 0.0909090..., the periodic part could be either 09 or 90. This sequences assumes that the zeros are at the end of the periodic part. See A171928 for the case of zeros at the beginning of the periodic part.
Note that the terms following 487 are divisible by 487. This pattern continues until the prime number 56598313, which is another member of A045616.

Programs

  • Mathematica
    Reap[Do[k=RealDigits[1/n][[1,-1]]; If[Head[k] === List && Mod[FromDigits[k],n] == 0, Sow[n]], {n,10000}]][[2,1]]

A250206 Least base b > 1 such that b^A000010(n) = 1 (mod n^2).

Original entry on oeis.org

2, 5, 8, 7, 7, 17, 18, 15, 26, 7, 3, 17, 19, 19, 26, 31, 38, 53, 28, 7, 19, 3, 28, 17, 57, 19, 80, 19, 14, 107, 115, 63, 118, 65, 18, 53, 18, 69, 19, 7, 51, 19, 19, 3, 26, 63, 53, 17, 18, 57, 134, 19, 338, 161, 3, 31, 28, 41, 53, 107, 264, 115, 19, 127, 99, 161, 143, 65, 28, 99, 11, 55
Offset: 1

Views

Author

Eric Chen, Feb 21 2015

Keywords

Comments

a(n) = least base b > 1 such that n is a Wieferich number (see A077816).
At least, b = n^2+1 can satisfy this equation, so a(n) is defined for all n.
Least Wieferich number (>1) to base n: 2, 1093, 11, 1093, 2, 66161, 4, 3, 2, 3, 71, 2693, 2, 29, 4, 1093, 2, 5, 3, 281, 2, 13, 4, 5, 2, ...; each is a prime or 4. It is 4 if and only if n mod 72 is in the set {7, 15, 23, 31, 39, 47, 63}.
Does every natural number (>1) appear in this sequence? If yes, do they appear infinitely many times?
For prime n, a(n) = A185103(n), does there exist any composite n such that a(n) = A185103(n)?

Examples

			a(30) = 107 since A000010(30) = 8, 30^2 = 900, and 107 is the least base b > 1 such that b^8 = 1 (mod 900).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{b = 2, m = EulerPhi[n]}, While[ PowerMod[b, m, n^2] != 1, b++]; b]; f[1] = 2; Array[f, 72] (* Robert G. Wilson v, Feb 28 2015 *)
  • PARI
    a(n)=for(k=2,2^24,if((k^eulerphi(n))%(n^2)==1, return(k)))

Formula

a(prime(n)) = A039678(n) = A185103(prime(n)).
a(A077816(n)) = 2.
a(A242958(n)) <= 3.
Previous Showing 11-19 of 19 results.