cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 103 results. Next

A118950 Numbers containing at least one prime digit.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 42, 43, 45, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 62, 63, 65, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112
Offset: 1

Views

Author

Rick L. Shepherd, May 06 2006

Keywords

Comments

A193238(a(n)) > 0; complement of A084984; A092620, A092624 and A092625 are subsequences. - Reinhard Zumkeller, Jul 19 2011

Crossrefs

Programs

  • Haskell
    a118950 n = a118950_list !! (n-1)
    a118950_list = filter (any (`elem` "2357") . show ) [0..]
    -- Reinhard Zumkeller, Jul 19 2011
    
  • Mathematica
    Select[Range[150],AnyTrue[IntegerDigits[#],PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 19 2018 *)
  • PARI
    is(n)=!!#select(isprime, digits(n)) \\ Charles R Greathouse IV, Sep 15 2015

Formula

a(n) = n + O(n^k) with k = log 6/log 10 = 0.77815.... - Charles R Greathouse IV, Sep 15 2015

A029581 Numbers in which all digits are composite.

Original entry on oeis.org

4, 6, 8, 9, 44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 89, 94, 96, 98, 99, 444, 446, 448, 449, 464, 466, 468, 469, 484, 486, 488, 489, 494, 496, 498, 499, 644, 646, 648, 649, 664, 666, 668, 669, 684, 686, 688, 689, 694, 696, 698, 699, 844, 846, 848
Offset: 1

Views

Author

Keywords

Comments

If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n) = Sum_{j=0..m} c(d(j))*10^j, where c(k)=4,6,8,9 for k=1..4. - Hieronymus Fischer, May 30 2012

Examples

			From _Hieronymus Fischer_, May 30 2012: (Start)
a(1000) = 88649.
a(10^4) = 6468989
a(10^5) = 449466489. (End)
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | Set(Intseq(n)) subset [4, 6, 8, 9]]; // Vincenzo Librandi, Dec 17 2018
  • Mathematica
    Table[FromDigits/@Tuples[{4, 6, 8, 9}, n], {n, 3}] // Flatten (* Vincenzo Librandi, Dec 17 2018 *)

Formula

From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = Sum_{j=0..m-1} (2*b(j) mod 8 + 4 + floor(b(j)/4) - floor((b(j)+1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)).
Also: a(n) = Sum_{j=0..m-1} (A010877(2*b(j)) + 4 + A002265(b(j)) - A002265(b(j)+1))*10^j.
Special values:
a(1*(4^n-1)/3) = 4*(10^n-1)/9.
a(2*(4^n-1)/3) = 2*(10^n-1)/3.
a(3*(4^n-1)/3) = 8*(10^n-1)/9.
a(4*(4^n-1)/3) = 10^n-1.
a(n) < 4*(10^log_4(3*n+1)-1)/9, equality holds for n=(4^k-1)/3, k > 0.
a(n) < 4*A084544(n), equality holds iff all digits of A084544(n) are 1.
a(n) > 2*A084544(n).
Lower and upper limits:
lim inf a(n)/10^log_4(n) = 1/10*10^log_4(3) = 0.62127870, for n --> inf.
lim sup a(n)/10^log_4(n) = 4/9*10^log_4(3) = 2.756123868970, for n --> inf.
where 10^log_4(n) = n^1.66096404744...
G.f.: g(x) = (x^(1/3)*(1-x))^(-1) Sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(4 + 6z(j) + 8*z(j)^2 + 9*z(j)^3)/(1-z(j)^4), where z(j) = x^4^j.
Also: g(x) = (1/(1-x))*(4*h_(4,0)(x) + 2*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*(x^(k*4^j)/(1-x^4^(j+1)). (End)
Sum_{n>=1} 1/a(n) = 1.039691381254753739202528087006945643166147087095114911673083135126969046250... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024

Extensions

Offset corrected by Arkadiusz Wesolowski, Oct 03 2011

A217112 Greatest number (in decimal representation) with n nonprime substrings in binary representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 3, 7, 6, 15, 14, 31, 29, 30, 63, 61, 62, 127, 54, 125, 126, 255, 117, 251, 254, 189, 511, 479, 509, 510, 379, 502, 1023, 1021, 1007, 1022, 958, 1018, 1014, 2047, 2045, 1791, 2046, 2042, 2027, 2037, 4091, 4095, 4063, 3069, 4094, 4090, 4085, 8159, 8187, 8191, 8189, 8127
Offset: 1

Views

Author

Hieronymus Fischer, Dec 20 2012

Keywords

Comments

There are no numbers with zero nonprime substrings in binary representation. For all bases > 2 there is always a number (=2) with zero nonprime substrings.
The set of numbers with n nonprime substrings is finite. Proof: Evidently, each 1-digit binary number represents 1 nonprime substring. Hence, each (n+1)-digit number has at least n+1 nonprime substrings. Consequently, there is a boundary b < 2^n, such that all numbers > b have more than n nonprime substrings.

Examples

			(1) = 1, since 1 = 1_2 (binary) is the greatest number with 1 nonprime substring.
a(2) = 3 = 11_2 has 3 substrings in binary representation (1, 1 and 11), two of them are nonprime substrings (1 and 1), and 11_2 = 3 is the only prime substrings. 3 is the greatest number with 2 nonprime substrings.
a(8) = 29 = 11101_2 has 15 substrings in binary representation (0, 1, 1, 1, 1, 11, 11, 10, 01, 111, 110, 101, 1110, 1101, 11101), exactly 8 of them are nonprime substrings (0, 1, 1, 1, 1, 01, 110, 1110). There is no greater number with 8 nonprime substrings in binary representation.
a(14) = 54 = 110110_2 has 21 substrings in binary representation, only 7 of them are prime substrings (10, 10, 11, 11, 101, 1011, 1101), which implies that exactly 14 substrings must be nonprime. There is no greater number with 14 nonprime substrings in binary representation.
		

Crossrefs

Formula

a(n) >= A217102(n).
a(n) >= A217302(A000217(A070939(a(n)))-n).
Example: a(9)=30=11110_2, A000217(A070939(31))=15, hence, a(9)>=A217302(15-9)=27.
a(n) <= 2^n.
a(n) <= 2^min(6 + n/6, 20*floor((n+125)/126)).
a(n) <= 64*2^(n/6).
With m := floor(log_2(a(n))) + 1:
a(n+m+1) >= 2*a(n), if a(n) is even.
a(n+m) >= 2*a(n), if a(n) is odd.

A217119 Greatest number (in decimal representation) with n nonprime substrings in base-9 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

47, 428, 1721, 6473, 14033, 35201, 58961, 58967, 465743, 530701, 530710, 1733741, 4250788, 4723108, 4776398, 25051529, 37327196, 42450640, 42986860, 42987589, 42996409, 225463817, 382055767, 382571822, 386888308, 386888419, 387356789
Offset: 0

Views

Author

Hieronymus Fischer, Dec 20 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n nonprime substrings is not empty and finite. Proof of existence: Define m(n):=2*sum_{j=i..k} 9^j, where k:=floor((sqrt(8n+1)-1)/2), i:= n-(k(k+1)/2). For n=0,1,2,3,... the m(n) in base-9 representation are 2, 22, 20, 222, 220, 200, 2222, 2220, 2200, 2000, 22222, 22220, .... m(n) has k+1 digits and (k-i+1) 2’s. Thus, the number of nonprime substrings of m(n) is ((k+1)(k+2)/2)-k-1+i=(k(k+1)/2)+i=n. This proves the statement of existence. Proof of finiteness: Each 3-digit base-9 number has at least 1 nonprime substring. Hence, each 3(n+1)-digit number has at least n+1 nonprime substrings. Consequently, there is a boundary b < 9^(3n+2) such that all numbers > b have more than n nonprime substrings. It follows, that the set of numbers with n nonprime substrings is finite.

Examples

			a(0) = 47, since 47 = 52_9 (base-9) is the greatest number with zero nonprime substrings in base-9 representation.
a(1) = 428 = 525_9 has 1 nonprime substring in base-9 representation (= 525_9). All the other base-9 substrings (2, 5, 5, 25, 52) are prime substrings. 525_9 is the greatest number with 1 nonprime substring.
a(2) = 1721 = 2322_9 has 10 substrings in base-9 representation, exactly 2 of them are nonprime substrings (22_9 and 23_3=8), and there is no greater number with 2 nonprime substrings in base-9 representation.
a(7) = 58967= 88788_9 has 15 substrings in base-9 representation, exactly 7 of them are nonprime substrings (4-times 8, 2-times 88, and 8788), and there is no greater number with 7 nonprime substrings in base-9 representation.
		

Crossrefs

Formula

a(n) >= A217109(n).
a(n) >= A217309(A000217(num_digits_9(a(n)))-n), where num_digits_9(x)=floor(log_9(x))+1 is the number of digits of the base-9 representation of x.
a(n) <= 9^(n+2).
a(n) <= 9^min(n+2, 6*floor((n+7)/8)).
a(n) <= 9^((3/4)*(n + 3)).
a(n+m+1) >= 9*a(n), where m := floor(log_9(a(n))) + 1.

A092620 Numbers with exactly one prime digit.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 20, 21, 24, 26, 28, 29, 30, 31, 34, 36, 38, 39, 42, 43, 45, 47, 50, 51, 54, 56, 58, 59, 62, 63, 65, 67, 70, 71, 74, 76, 78, 79, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 120, 121, 124, 126, 128, 129, 130, 131, 134
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

A193238(a(n))=1; subsequence of A118950. - Reinhard Zumkeller, Jul 19 2011

Examples

			12 has one prime digit, 2;
102 has one prime digit, 2.
		

Crossrefs

Subsequence of A118950.

Programs

  • Haskell
    import Data.List (elemIndices)
    a092620 n = a092620_list !! (n-1)
    a092620_list = elemIndices 1 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_n:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='true' and ts_stpf(i) =0) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_n(300);
  • Mathematica
    Select[Range[150],Count[IntegerDigits[#],?(PrimeQ)]==1&] (* _Harvey P. Dale, Mar 23 2018 *)

Formula

There are 6^n*(n-1/6)*2/3 n-digit members of this sequence for n > 1. - Charles R Greathouse IV, Apr 23 2022

A085557 Numbers that have more prime digits than nonprime digits.

Original entry on oeis.org

2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232
Offset: 1

Views

Author

Jason Earls, Jul 04 2003

Keywords

Comments

Begins to differ from A046034 at the 21st term (which is the first 3-digit term).

Examples

			133 is in the sequence as the prime digits are 3 and 3 (those are two digits; counted with multiplicity) and one nonprime digit 1 and so there are more prime digits than nonprime digits. - _David A. Corneth_, Sep 06 2020
		

Crossrefs

Programs

  • PARI
    is(n) = my(d = digits(n), c = 0); for(i = 1, #d, if(isprime(d[i]), c++)); c<<1 > #d \\ David A. Corneth, Sep 06 2020
    
  • Python
    from itertools import count, islice
    def A085557_gen(startvalue=1): # generator of terms
        return filter(lambda n:len(s:=str(n))<(sum(1 for d in s if d in {'2','3','5','7'})<<1),count(max(startvalue,1)))
    A085557_list = list(islice(A085557_gen(),20)) # Chai Wah Wu, Feb 08 2023

A092624 Numbers with exactly two prime digits.

Original entry on oeis.org

22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 122, 123, 125, 127, 132, 133, 135, 137, 152, 153, 155, 157, 172, 173, 175, 177, 202, 203, 205, 207, 212, 213, 215, 217, 220, 221, 224, 226, 228, 229, 230, 231, 234, 236, 238, 239, 242, 243, 245
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

A193238(a(n))=2; subsequence of A118950. [Reinhard Zumkeller, Jul 19 2011]

Examples

			25 has two prime digits, 2 and 5;
207 has two prime digits, 2 and 7.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a092624 n = a092624_list !! (n-1)
    a092624_list = elemIndices 2 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_nd:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( ts_stpf(i) = 2) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_nd(500);
  • Mathematica
    Select[Range[300],Count[IntegerDigits[#],?PrimeQ]==2&] (* _Harvey P. Dale, Apr 20 2025 *)

A092625 Numbers with exactly three prime digits.

Original entry on oeis.org

222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532, 533, 535, 537, 552, 553, 555, 557, 572, 573, 575, 577, 722, 723, 725
Offset: 1

Views

Author

Jani Melik, Apr 11 2004

Keywords

Comments

It is the same as A046034 from two digit numbers from 22 up to four digit numbers from 1222.
A193238(a(n))=3; subsequence of A118950. [Reinhard Zumkeller, Jul 19 2011]

Examples

			222 has three prime digits, three times 2;
1235 has three prime digits, 2, 3 and 5.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a092625 n = a092625_list !! (n-1)
    a092625_list = elemIndices 3 a193238_list
    -- Reinhard Zumkeller, Jul 19 2011
  • Maple
    stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stpf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='true') then stpf:=stpf+1; # number of prime digits fi od; RETURN(stpf) end: ts_pr_nt:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( ts_stpf(i) = 3) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_pr_nt(2000);
  • Mathematica
    Select[Range[800],Total[Boole[PrimeQ[IntegerDigits[#]]]]==3&] (* Harvey P. Dale, Dec 31 2023 *)

A213304 Smallest number with n nonprime substrings (Version 3: substrings with leading zeros are counted as nonprime if the corresponding number is not a prime).

Original entry on oeis.org

2, 1, 10, 14, 101, 104, 144, 1001, 1014, 1044, 1444, 10010, 10014, 10144, 10444, 14444, 100120, 100104, 100144, 101444, 104444, 144444, 1000144, 1001040, 1001044, 1001444, 1014444, 1044444, 1444444, 10001044, 10001444, 10010404, 10010444, 10014444, 10144444, 10444444, 14444444, 100010404, 100010444, 100014444, 100104044, 100104444, 100144444, 101444444, 104444444, 144444444
Offset: 0

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is well defined since for each n >= 0 there is a number with n nonprime substrings.
Different from A213303, first difference is at a(16).

Examples

			a(0)=2, since 2 is the least number with zero nonprime substrings.
a(1)=1, since 1 has 1 nonprime substrings.
a(2)=10, since 10 is the least number with 2 nonprime substrings, these are 1 and 10 ('0' will not be counted).
a(3)=14, since 14 is the least number with 3 nonprime substrings, these are 1 and 4 and 14. 10, 11 and 12 only have 2 such substrings.
		

Crossrefs

Formula

a(m(m+1)/2) = (13*10^(m-1)-4)/9, m>0.
With b(n):=floor((sqrt(8*n-7)-1)/2):
a(n) > 10^b(n), for n>2, a(n) = 10^b(n) for n=1,2.
a(n) >= 10^b(n)+4*10^(n-1-b(n)(b(n)+1)/2)-1)/9, equality holds if n or n+1 is a triangular number > 0 (cf. A000217).
a(n) >= A213303(n).
a(n) <= A213307(n).

A077533 Multiples of 3 using only prime digits (2, 3, 5 and 7).

Original entry on oeis.org

3, 27, 33, 57, 72, 75, 222, 225, 237, 252, 255, 273, 327, 333, 357, 372, 375, 522, 525, 537, 552, 555, 573, 723, 732, 735, 753, 777, 2223, 2232, 2235, 2253, 2277, 2322, 2325, 2337, 2352, 2355, 2373, 2523, 2532, 2535, 2553, 2577, 2727, 2733, 2757, 2772, 2775
Offset: 1

Views

Author

Amarnath Murthy, Nov 08 2002

Keywords

Crossrefs

Cf. A008585 (multiples of 3), A046034 (prime digits).

Programs

  • Mathematica
    ok3Q[n_]:=And@@(MemberQ[{2,3,5,7},#]&/@IntegerDigits[n]); Select[3Range[0,1000],ok3Q]  (* Harvey P. Dale, Mar 22 2011 *)
    Select[Flatten[Table[FromDigits/@Tuples[{2,3,5,7},n],{n,4}]],Mod[#,3]==0&] (* Harvey P. Dale, Feb 27 2025 *)
  • Python
    def pd(n): return set(str(n)) <= set("2357") # has only prime digits
    def aupto(limit): return [m for m in range(0, limit+1, 3) if pd(m)]
    print(aupto(3000)) # Michael S. Branicky, Mar 27 2021

Extensions

More terms from Sascha Kurz, Jan 03 2003
Previous Showing 31-40 of 103 results. Next