Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 3, 11, 15, 21, 14, 77, 101, 135, 176, 231, 297, 385, 245, 627, 198, 1002, 1255, 1575, 979, 812, 1505, 1859, 4565, 1401, 3421, 2783, 1449, 6155, 4961, 17977, 21637, 26015, 31185, 1778, 2123, 26587, 63261, 75175, 44567, 17593, 8911, 49091
Offset: 0
The same for factorizations is
A331023.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 1, 3, 4, 5, 3, 15, 18, 22, 27, 32, 38, 46, 27, 64, 19, 89, 104, 122, 71, 55, 96, 111, 256, 74, 170, 130, 64, 256, 195, 668, 760, 864, 982, 53, 60, 713, 1610, 1816, 1024, 384, 185, 970, 3264, 1829, 4097, 4582, 5120, 5718, 3189, 7108, 2639
Offset: 0
The same for factorizations is
A331024.
A330993
Numbers k such that a multiset whose multiplicities are the prime indices of k has a prime number of multiset partitions.
Original entry on oeis.org
3, 4, 5, 7, 8, 10, 11, 12, 13, 21, 22, 25, 33, 38, 41, 45, 46, 49, 50, 55, 57, 58, 63
Offset: 1
The multiset partitions for n = 1..6:
{11} {12} {111} {1111} {123} {1112}
{1}{1} {1}{2} {1}{11} {1}{111} {1}{23} {1}{112}
{1}{1}{1} {11}{11} {2}{13} {11}{12}
{1}{1}{11} {3}{12} {2}{111}
{1}{1}{1}{1} {1}{2}{3} {1}{1}{12}
{1}{2}{11}
{1}{1}{1}{2}
The factorizations for n = 1..8:
4 6 8 16 30 24 32 60
2*2 2*3 2*4 2*8 5*6 3*8 4*8 2*30
2*2*2 4*4 2*15 4*6 2*16 3*20
2*2*4 3*10 2*12 2*2*8 4*15
2*2*2*2 2*3*5 2*2*6 2*4*4 5*12
2*3*4 2*2*2*4 6*10
2*2*2*3 2*2*2*2*2 2*5*6
3*4*5
2*2*15
2*3*10
2*2*3*5
The same for powers of 2 (instead of primes) is
A330990.
Numbers whose number of integer partitions is prime are
A046063.
Numbers whose number of strict integer partitions is prime are
A035359.
Numbers whose number of set partitions is prime are
A051130.
Numbers whose number of factorizations is a power of 2 are
A330977.
The least number with prime(n) factorizations is
A330992(n).
Factorizations of a number's inverse prime shadow are
A318284.
Numbers with a prime number of factorizations are
A330991.
Cf.
A033833,
A045783,
A056239,
A181819,
A181821,
A305936,
A318286,
A325755,
A330972,
A330973,
A330998.
-
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&]
A331201
Numbers k such that the number of factorizations of k into distinct factors > 1 is a prime number.
Original entry on oeis.org
6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 75, 76, 77, 78, 80, 81, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102
Offset: 1
Strict factorizations of selected terms:
(6) (12) (24) (48) (216)
(2*3) (2*6) (3*8) (6*8) (3*72)
(3*4) (4*6) (2*24) (4*54)
(2*12) (3*16) (6*36)
(2*3*4) (4*12) (8*27)
(2*3*8) (9*24)
(2*4*6) (12*18)
(2*108)
(3*8*9)
(4*6*9)
(2*3*36)
(2*4*27)
(2*6*18)
(2*9*12)
(3*4*18)
(3*6*12)
(2*3*4*9)
The version for strict integer partitions is
A035359.
The version for integer partitions is
A046063.
The version for set partitions is
A051130.
Numbers whose number of strict factorizations is odd are
A331230.
Numbers whose number of strict factorizations is even are
A331231.
The least number with n strict factorizations is
A330974(n).
Cf.
A001318,
A045780,
A318286,
A328966,
A330992,
A330993,
A330997,
A331023/
A331024,
A331050,
A331051,
A331200,
A331232.
-
strfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strfacs[n/d],Min@@#>d&]],{d,Rest[Divisors[n]]}]];
Select[Range[100],PrimeQ[Length[strfacs[#]]]&]
A051143
Numbers k such that the k-th prime is a partition number.
Original entry on oeis.org
1, 2, 3, 4, 5, 26, 2061, 702993, 307058572, 3350187739, 9088200428, 43794115173, 51932790219, 378210209388, 521301342188, 297064987225918, 19677201507658441, 437852535314831447, 1673669998972800207, 29252504332047744188, 42842701894337201916
Offset: 1
a(16)-a(21) using Kim Walisch's primecount, from
Amiram Eldar, Jul 26 2019
A113499
Numbers n such that P(11*n) is prime where P(n) is the partition number.
Original entry on oeis.org
7, 12, 40, 75, 163, 228, 261, 288, 322, 331, 618, 678, 768, 926, 2990, 3821, 4852, 5726, 10802, 11710, 12006, 12635, 14470, 18097, 22156, 25776, 29142, 32692, 36965, 48830, 51821, 56433, 58008, 63757, 64433, 67545, 68391, 69850, 73723, 77498, 77770
Offset: 1
If n=163 then P(11*n) = 11820527237297139926370474832027317722017807 (prime).
-
For[n = 1, n < 1000, n++, If[PrimeQ[PartitionsP[11*n]], If[ProvablePrimeQ[PartitionsP[11*n]], Print[n]]]] (* Stefan Steinerberger *)
Do[ If[ PrimeQ@ PartitionsP[11n], Print@n], {n, 3000}] (* Robert G. Wilson v *)
A121992
List of Eisenstein triples: {a,b,c} such that {a^2 + b^2 - a*b - c^2 = 0} and abs(a - b) > 0, sorted by greatest a.
Original entry on oeis.org
3, 8, 7, 5, 8, 7, 5, 21, 19, 6, 16, 14, 7, 15, 13, 8, 3, 7, 8, 5, 7, 8, 15, 13, 9, 24, 21, 10, 16, 14, 15, 7, 13, 15, 8, 13, 15, 24, 21, 16, 6, 14, 16, 10, 14, 16, 21, 19, 21, 5, 19, 21, 16, 19, 24, 9, 21, 24, 15, 21
Offset: 1
Grouped as threes: {{3, 8, 7}, {5, 8, 7}, {5, 21, 19}, {6, 16, 14}, {7, 15, 13}, {8, 3, 7}, {8, 5, 7}, {8, 15, 13}, {9, 24, 21}, {10, 16, 14}, {15, 7, 13}, {15, 8, 13}, {15, 24, 21}, {16,6, 14}, {16, 10, 14}, {16, 21, 19}, {21, 5, 19}, {21, 16, 19}, {24, 9, 21}, {24, 15, 21}}
- Ross Honsberger, "Mathematical Delights", MAA, 2004, p. 64.
- Park City Mathematics Institute, Session 13 Number Theory, Summer 2001. A similar factoring allows for the generation of Eisenstein triples, which are numbers that form the sides of a triangle with a 60-degree angle.
-
f[a_, b_, c_] = If[c^2 - a^2 - b^2 + a*b == 0 && Abs[a - b] > 0, {a, b, c}, {}] a0 = Flatten[Delete[Union[Table[Delete[Union[Table[Flatten[Table[f[a, b, c], {c, 1, 25}]], {b, 1, 25}]], 1], {a, 1, 25}]], 1], 1] b0 = Sort[a0] Flatten[b0]
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 30, 32, 34, 35, 37, 39, 41, 44, 46, 48, 51, 53, 56, 59, 61, 64, 68, 71, 74, 78, 81, 85, 89, 93, 97, 101, 106, 111, 115, 120, 126
Offset: 0
The same for factorizations is
A331048.
A355704
Indices k of partition function p where p(k) and p(k) + 2 are twin primes.
Original entry on oeis.org
3, 4, 6, 13, 2335166
Offset: 1
13 is a term because A000041(13) = 101 is prime and 103 is prime.
-
for(n=1, 2500, if(ispseudoprime(p=numbpart(n))&&ispseudoprime(p+2), print1(n,", ")))
A355706
Indices k of partition function p where p(k) is a twin prime.
Original entry on oeis.org
3, 4, 5, 6, 13, 186, 3542, 2335166
Offset: 1
13 is a term because A000041(13) = 101 is prime and 101 and 103 are twin primes.
-
for(n=1, 3600, if(ispseudoprime(p=numbpart(n))&&(ispseudoprime(p-2)||ispseudoprime(p+2)), print1(n, ", ")))
Comments