cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A272596 Numbers n such that the multiplicative group modulo n is the direct product of 6 cyclic groups.

Original entry on oeis.org

9240, 10920, 14280, 15960, 17160, 18480, 19320, 21840, 22440, 24024, 24360, 25080, 26040, 26520, 27720, 28560, 29640, 30360, 31080, 31416, 31920, 32760, 34320, 34440, 35112, 35880, 36120, 36960, 37128, 38280, 38640, 38760, 39480, 40040, 40920, 41496, 42504, 42840, 43680, 44520, 44880, 45240, 46200
Offset: 1

Views

Author

Joerg Arndt, May 05 2016

Keywords

Comments

Numbers n such that A046072(n) = 6.

Crossrefs

Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272597 (k=7), A272598 (k=8), A272599 (k=9).

Programs

  • Mathematica
    A046072[n_] := Which[n == 1 || n == 2, 1,
         OddQ[n], PrimeNu[n],
         EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
         Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n],
         Divisible[n, 8], PrimeNu[n] + 1];
    Select[Range[5*10^4], A046072[#] == 6&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
  • PARI
    for(n=1, 10^5, my(t=#(znstar(n)[2])); if(t==6, print1(n, ", ")));

A272597 Numbers n such that the multiplicative group modulo n is the direct product of 7 cyclic groups.

Original entry on oeis.org

120120, 157080, 175560, 185640, 207480, 212520, 240240, 251160, 267960, 271320, 286440, 291720, 314160, 316680, 326040, 328440, 338520, 341880, 351120, 360360, 367080, 371280, 378840, 394680, 397320, 404040, 408408, 414120, 414960, 425040, 426360, 434280, 442680, 447720, 456456, 462840, 469560, 471240
Offset: 1

Views

Author

Joerg Arndt, May 05 2016

Keywords

Comments

Numbers n such that A046072(n) = 7.

Crossrefs

Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272598 (k=8), A272599 (k=9).

Programs

  • Mathematica
    A046072[n_] := Which[n == 1 || n == 2, 1,
         OddQ[n], PrimeNu[n],
         EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
         Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n],
         Divisible[n, 8], PrimeNu[n] + 1];
    Select[Range[5*10^5], A046072[#] == 7&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
  • PARI
    for(n=1, 10^6, my(t=#(znstar(n)[2])); if(t==7, print1(n, ", ")));

A272598 Numbers n such that the multiplicative group modulo n is the direct product of 8 cyclic groups.

Original entry on oeis.org

2042040, 2282280, 2762760, 2984520, 3483480, 3527160, 3612840, 3723720, 4037880, 4084080, 4269720, 4444440, 4555320, 4564560, 4772040, 4869480, 4924920, 5091240, 5165160, 5383560, 5442360, 5525520, 5542680, 5645640, 5754840, 5811960, 5969040, 6016920, 6126120, 6163080, 6240360, 6366360, 6431880, 6440280
Offset: 1

Views

Author

Joerg Arndt, May 05 2016

Keywords

Comments

Numbers n such that A046072(n) = 8.

Crossrefs

Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272599 (k=9).

Programs

  • Mathematica
    A046072[n_] := Which[n == 1 || n == 2, 1,
         OddQ[n], PrimeNu[n],
         EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
         Divisible[n, 4] && !Divisible[n, 8], PrimeNu[n],
         Divisible[n, 8], PrimeNu[n] + 1];
    Select[Range[120, 120*10^5, 120], A046072[#] == 8&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
  • PARI
    for(n=1, 10^7, my(t=#(znstar(n)[2])); if(t==8, print1(n, ", ")));

A272599 Numbers n such that the multiplicative group modulo n is the direct product of 9 cyclic groups.

Original entry on oeis.org

38798760, 46966920, 52492440, 59219160, 63303240, 66186120, 68643960, 70750680, 75555480, 77597520, 80120040, 81124680, 83723640, 84444360, 85645560, 86551080, 87807720, 92520120, 93573480, 93933840, 95975880, 98138040, 102222120, 102287640, 104772360, 104984880, 107267160, 107987880, 108228120, 109341960, 110427240
Offset: 1

Views

Author

Joerg Arndt, May 05 2016

Keywords

Comments

Numbers n such that A046072(n) = 9.

Crossrefs

Direct product of k groups: A033948 (k=1), A272592 (k=2), A272593 (k=3), A272594 (k=4), A272595 (k=5), A272596 (k=6), A272597 (k=7), A272598 (k=8).

Programs

  • Mathematica
    A046072[n_] := Which[n == 1 || n == 2, 1,
         OddQ[n], PrimeNu[n],
         EvenQ[n] && !Divisible[n, 4], PrimeNu[n] - 1,
         Divisible[n, 4] && ! Divisible[n, 8], PrimeNu[n],
         Divisible[n, 8], PrimeNu[n] + 1];
    Select[Range[840, 840*140000, 840], A046072[#] == 9&] (* Jean-François Alcover, Dec 22 2021, after Geoffrey Critzer in A046072 *)
  • PARI
    for(n=1, 10^9, my(t=#(znstar(n)[2])); if(t==9, print1(n, ", ")));

A157230 Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the diagonals of the unit cell of the parent lattice of index n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 2, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 4, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 2, 2, 1, 4, 1, 1, 1, 4, 2, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Feb 25 2009

Keywords

Comments

After a(2), this matches A034380 except for n = 63, 65, 80, 85, ... - R. J. Mathar, Feb 27 2009 [Updated by Andrey Zabolotskiy, May 09 2018]

Crossrefs

Cf. A145393 (all sublattices of the square lattice), A019590, A157228, A157226, A157231, A304182, A060594, A046072, A033948, A272592.

Programs

  • Mathematica
    a[n_] := If[n <= 2, 0, Sum[Boole[Mod[k^2, n] == 1], {k, 1, n}]/2];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 12 2023 *)

Formula

From Andrey Zabolotskiy, Sep 30 2018: (Start)
a(n) = (A060594(n) - A019590(n))/2.
a(n) = 2^(A046072(n)-1) for n>2. Thus a(n) = 1 if n>2 is in A033948, a(n) = 2 if n is in A272592, etc. (End)

Extensions

New name and more terms from Andrey Zabolotskiy, May 09 2018

A282624 Irregular triangle read by rows: row n gives a certain choice of generators of the multiplicative group of integers modulo A033949(n).

Original entry on oeis.org

3, 5, 5, 7, 2, 11, 3, 7, 3, 11, 2, 13, 5, 7, 13, 3, 13, 7, 11, 3, 31, 2, 23, 19, 13, 5, 19, 17, 5, 3, 11, 29, 5, 13, 3, 43, 11, 17, 5, 7, 17, 5, 35, 3, 5, 19, 23, 3, 13, 29, 2, 37, 7, 11, 19, 2, 5, 3, 31, 2, 31, 5, 43, 3, 67, 2, 68, 19, 13, 5, 17, 19, 11, 7
Offset: 1

Views

Author

Wolfdieter Lang, Mar 03 2017

Keywords

Comments

The length of row n is given by A046072(A033949(n)), n >= 1.
The generators are chosen minimally in the sense that the product of their orders (cycle lengths) is phi(N(n)) = A000010(N(n)) with N(n) = A033949(n). In addition, the generators are sorted with nonincreasing orders, and the smallest numbers with these orders are listed.
Note that the first instance where a composite generator is needed is N = 51 = A033949(20) with a generator 35. The next such number is N = 69 = A033949(31) with a generator 68. Such numbers N will be called exceptional.
For a table with n = 1..69, N = 8, 12, ..., 130, see the W. Lang link. Compare this with the Wikipedia table (where some generator errors will be corrected). There non-minimal generators are also used, i.e., the product of the orders of the generators is larger than phi(N). The Wikipedia table often uses composite generators when primes would do the job. E.g., N = 16 with generators 2, 14 instead of 2, 11; or N = 16 with 3, 15 instead of 3, 7, etc.

Examples

			The irregular triangle T(n, k) begins (here N = A033949(n), and the respective primitive cycle lengths and phi(N) are also given)
n,   N \k 1   2   3 ... cycle lengths, phi(N)
1,   8:   3   5           2  2          4
2,  12:   5   7           2  2          4
3,  15:   2  11           4  2          8
4,  16:   3   7           4  2          8
5,  20:   3  11           4  2          8
6,  21:   2  13           6  2         12
7,  24:   5   7  13       2  2  2       8
8,  28:   3  13           6  2         12
9,  30:   7  11           4  2          8
10, 32:   3  31           8  2         16
11, 33:   2  23          10  2         20
12, 35:  19  13           6  4         24
13, 36:   5  19           6  2         12
14, 39:  17   5           6  4         24
15, 40:   3  11  29       4  2  2      16
16: 42:   5  13           6  2         12
17, 44:   3  43          10  2         20
18, 45:  11  17           6  4         24
19, 48:   5   7  17       4  2  2      16
20, 51:   5  35          16  2         32
... See the link for more.
		

Crossrefs

A302257 Number of minimal generating sets {x_1, x_2, ..., x_r} of (Z/nZ)* such that Product_{i=1..r} (x_i)^(e_i) == 1 (mod n) implies that (x_i)^(e_i) == 1 (mod n) for 1 <= i <= r. Here (Z/nZ)* is the multiplicative group of integers modulo n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 2, 8, 8, 8, 2, 6, 8, 12, 4, 10, 28, 8, 4, 6, 12, 12, 8, 8, 16, 24, 8, 32, 12, 12, 6, 32, 96, 16, 12, 12, 24, 32, 10, 22, 96, 12, 8, 32, 32, 24, 6, 64, 168, 36, 12, 28, 96, 16, 8, 144, 32, 192, 24, 20, 32, 60, 32, 24, 168, 24, 12, 64, 36, 96, 32
Offset: 1

Views

Author

Jianing Song, Apr 04 2018

Keywords

Comments

Originally named "Decompose the multiplicative group of integers modulo n as a product of cyclic groups C_{k_1} X C_{k_2} X ... X C_{k_m}, where k_i divides k_j for i < j, then a(n) is the number of generating sets {x_k_i} where x_k_i generates C_{k_i}", which is incorrect for n = 35, 39, 45, 52, 55, ...
A minimal generating set of a finitely generated group G is defined as a generating set of G with the least elements. For n >= 3, the number of elements in the minimal generating sets of (Z/nZ)* (denoted by rank((Z/nZ)*)) is given in A046072. The multiplicative group of integers modulo 1 or 2 is the trivial group (has rank 0). The minimal generating set of it is the empty set, which also meets the condition by the convention empty product is 1. - Jianing Song, Jun 27 2018
Equivalently, number of sets {x_1, x_2, ..., x_r} (r = rank((Z/nZ)*)) such that a one-to-one mapping can be set between all products of the form Product_{i=1..r} (x_i)^(e_i) and the elements in (Z/nZ)*, where 0 <= e_i < ord(x_i,n) for 1 <= i <= r (so a necessary condition is that (Z/nZ)* = C_{ord(x_1,n)} X C_{ord(x_2,n)} X ... X C_{ord(x_r,n)}). Here ord(x,n) is the multiplicative order of x modulo n. Such sets are generalizations of primitive roots modulo n (for r = 1). For an element g in (Z/nZ)*, the corresponding e_1, e_2, ..., e_r can be seen as index of g under a given such set {x_1, x_2, ..., x_r} modulo n. For example, for n = 16 and a given such set {3, 15}, we have: 1 == 3^0 * 15^0 (mod 16), 3 == 3^1 * 15^0 (mod 16), 5 == 3^3 * 15^1 (mod 16), 7 == 3^2 * 15^1 (mod 16), 9 == 3^2 * 15^0 (mod 16), 11 == 3^3 * 15^0 (mod 16), 13 == 3^1 * 15^1 (mod 16), 15 == 3^0 * 15^1 (mod 16).
For any finite abelian multiplicative group G and a generating set (not necessarily minimal) S = {x_1, x_2, ..., x_m}, the property "Product_{i=1..m} (x_i)^(e_i) = o implies that (x_i)^(e_i) = o for i = 1..m" (o is the group identity) can be stated as "the elements in S are multiplicatively independent". If G is viewed as an additive group, then the corresponding property is "Sum_{i=1..m} (e_i)*(x_i) = o implies that (e_i)*(x_i) = o for i = 1..m", which can be stated as "the elements in S are linearly independent". For convenience, if the elements in S are multiplicatively independent, we call S a MIS. The link below lists some more general results for MISs. They concern only on finite abelian multiplicative groups but they also have their versions on additive groups. - Jianing Song, Mar 16 2019
Let S = {x_1, x_2, ..., x_r} be a minimal generating set of (Z/nZ)*, then S is a MIS iff all Dirichlet characters modulo n are generated when Chi(x_1), Chi(x_2), ..., Chi(x_r) run through their all possible values. If so, for an element g in (Z/nZ)*, g == Product_{i=1..r} (x_i)^(e_i) (mod n), we have Chi(g) = Product_{i=1..r} Chi(x_i)^(e_i). For example, if we choose {3, 15} as a minimal generating set of (Z/16Z)*, then all 8 Dirichlet characters modulo 16 are generated when Chi(3) runs through {1, -1, i, -i} and Chi(15) runs through {1, -1}. On the other hand, if S is not a MIS, it implies that some values for Chi(x_1), Chi(x_2), ..., Chi(x_r) cannot be taken. Since (x_i)^(e_i) == 1 (mod n) doesn't imply that (x_i)^(e_i) == 1 (mod n) for 1 <= i <= r, suppose that (x_1)^(e_1) !== 1 (mod n), letting Chi(x_1) = exp(2*Pi*i/ord(x_1,n)) and Chi(x_2) = Chi(x_3) = ... = Chi(x_r) = 1 results in 1 = Chi(1) = Product_{i=1..r} Chi(x_i)^(e_i) = Chi(x_1)^(e_1) = exp(2e_1*Pi*i/ord(x_1,n)) != 1, a contradiction. - Jianing Song, Jun 27 2018 [Revised by Jianing Song, Mar 16 2019]
The elements in one MIS that is minimal of (Z/nZ)* is given in the n-th row of A323021. All other such sets can be obtained using group isomorphisms and automorphisms. See Theorem 3 in the link. - Jianing Song, Mar 16 2019

Examples

			For n = 16, we're looking for generating sets {x_1, x_2} such that (x_1)^(e_1) * (x_2)^(e_2) == 1 (mod 16) implies (x_1)^(e_1) == (x_2)^(e_2) == 1 (mod 16). Since (Z/16Z)* = C_2 X C_4, we can suppose that ord(x_1,16) = 4 and ord(x_2,16) = 2, which gives a total of 8 sets: {3, 7}, {5, 7}, {11, 7}, {13, 7}, {3, 15}, {5, 15}, {11, 15} and {13, 15}, so a(16) = 8. Note that {3, 5} is not what we want because 3^2 * 5^2 == 1 (mod 16) but 3^2 == 5^2 == 9 (mod 16).
For n = 35, we're looking for generating sets {x_1, x_2} such that (x_1)^(e_1) * (x_2)^(e_2) == 1 (mod 35) implies (x_1)^(e_1) == (x_2)^(e_2) == 1 (mod 35). Since (Z/35Z)* = C_2 X C_12 = C_4 X C_6, we can suppose that ord(x_1,35) = 12 and ord(x_2,35) = 2 (for example {2, 6}), or ord(x_1,35) = 6 and ord(x_2,35) = 4 (for example {19, 8}), which gives a total of 32 sets, so a(35) = 32.
		

Crossrefs

Programs

Formula

For a given n, let r = rank((Z/nZ)*) (= A046072(n) for n >= 3), then a(n) = A258615(n)*A316089(n)/r!. See these two sequences for explicit formulae. - Jianing Song, Jun 27 2018
If n is a term in A033948 (i.e., (Z/nZ)* is cyclic; rank((Z/nZ)*) = 0 or 1), then a(n) = phi(A033948(n)) = A000010(A033948(n)) = A046144(n).

Extensions

Typo corrected by Jianing Song, Jun 30 2018
More terms from Jianing Song, Jul 03 2018

A072273 Index of powers of 2 that equal the number of noncongruent roots to the congruence x^2 == k (mod n) for (k,n)=1 and assuming solvability.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 2, 2, 2, 2, 1, 2, 3, 1, 1, 2, 2, 1, 2, 1, 3, 3
Offset: 1

Views

Author

Lekraj Beedassy, Jul 09 2002

Keywords

Crossrefs

Cf. A060594.
Cf. A046072. - R. J. Mathar, Dec 15 2008

Programs

Formula

2^a(n) = A060594(n).
a(n) = A005087(n) + i, where i may be 0, 1 or 2 according as 2^j divides n, respectively with j <= 1, j = 2 or j >= 3, (i.e., i=0 when n is not divisible by 4; i=1 when n is divisible by 4 but not by 8; i=2 when n is divisible by 8).

Extensions

Corrected and extended by T. D. Noe, Sep 09 2005

A281855 Number of cyclic group factors in the total decomposition of the abelian non-cyclic group (Z/A033949(n) Z)^x. Row lengths of A281854.

Original entry on oeis.org

2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 4, 3, 3, 4, 2, 3, 3, 2, 3, 3, 4, 3, 3, 4, 3, 3, 4, 2, 3, 4, 3, 4, 3, 4, 3, 3, 4, 3, 2, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 2, 4, 3
Offset: 1

Views

Author

Wolfdieter Lang, Mar 03 2017

Keywords

Comments

See A281854.
Compare this with A046072(A033949(n)). In A046072 the decompositions used are not total, e.g., n = 6 with A033949(6) = 1 uses C_6, but C_6 = C_2 x C_3. Or, 21 = A033949(6), A046072(21) = 2 not 3 = a(6).

Crossrefs

A282625 Number of cyclic groups in the total direct product factorization of the multiplicative group of integers modulo n, for n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 2, 3, 1, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 4, 3, 2, 2, 3, 3, 3, 4, 2, 3, 3, 3, 2, 3, 3, 3, 4, 2, 2, 3, 3, 4, 3, 3, 3, 2, 2, 2, 4, 2, 3, 3, 4, 2, 3, 4, 3, 4, 2, 3, 3, 2, 3, 4, 3
Offset: 1

Views

Author

Wolfdieter Lang, Mar 02 2017

Keywords

Comments

The multiplicative group of integers modulo n, (Z/n*Z)^x, also the cyclotomic group, the Galois group Gal(Q(zeta(n))/Q) with zeta(n) = exp(2*Pi*I/n), is cyclic for n from A033948 and non-cyclic for n from A033949. Each of these groups is the direct product of cyclic factors (one factor is included).
In the total factorization for n >= 3 only cyclic factors whose orders are prime powers appear, and because the direct product is associative, and for these abelian groups also commutative, one can order the factors with nonincreasing orders.
For n=1 and n=2 the group is C_1 = {1} (for n=1 one has 1 == 0 (mod 1)).
Cyclic groups may also have a factorization into more than one factor. E.g., C_6 = C_3 x C_2.
The number of factors in this total factorization is for a cyclic group C_m, for m >= 2, given by A001221(m). For m=1 this number is 1 (not A001221(1)).
For non-cyclic groups the number of factors in this total factorization is given by A281855(m) if n = A033949(m), m >= 1.
For the non-cyclic group case see also the W. Lang links under A281854.
Compare this sequence with A046072 where another factorization of these groups is used, the one with the least cyclic factors. E.g., A046072(7) = 1 for the group C_6, and a(7) = 2 here (see the example above).

Examples

			n = 35, a non-cyclic case because A033949(12) = 35. The group can be written as <19_6, 13_4 > where the orders modulo 35 of the generators are given as subscript. Therefore the group is C_6 x C4 = C_4 x C_3 x C_2 and a(35) = 3, whereas A046072(35) = 2.
		

Crossrefs

Previous Showing 11-20 of 35 results. Next