cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 55 results. Next

A055524 Longest other side of a Pythagorean triangle with n as length of one of the three sides (in fact n is a leg and a(n) the hypotenuse).

Original entry on oeis.org

5, 5, 13, 10, 25, 17, 41, 26, 61, 37, 85, 50, 113, 65, 145, 82, 181, 101, 221, 122, 265, 145, 313, 170, 365, 197, 421, 226, 481, 257, 545, 290, 613, 325, 685, 362, 761, 401, 841, 442, 925, 485, 1013, 530, 1105, 577, 1201, 626, 1301, 677, 1405, 730, 1513, 785
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Mathematica
    A055524[n_] := (3*n^2-(-1)^n*(n^2-2)+6)/8; Array[A055524, 100, 3] (* or *)
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {5, 5, 13, 10, 25, 17}, 100] (* Paolo Xausa, Feb 29 2024 *)
  • PARI
    Vec(-x^3*(2*x^5+x^4-5*x^3-2*x^2+5*x+5)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Sep 15 2014

Formula

a(n) = sqrt(n^2+A055523(n)^2). a(2k) = k^2+1, a(2k+1) = k^2+(k+1)^2.
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). G.f.: -x^3*(2*x^5+x^4-5*x^3-2*x^2+5*x+5) / ((x-1)^3*(x+1)^3). - Colin Barker, Sep 15 2014
a(n) = (3*n^2+6-(n^2-2)*(-1)^n)/8. - Luce ETIENNE, Jul 11 2015

A063014 Number of solutions to n^2 = b^2 + c^2 (with c >= b >= 0).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 5, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jul 26 2001

Keywords

Examples

			a(0)=1 since 0^2 = 0^2 + 0^2;
a(5)=2 since 5^2 = 0^2 + 5^2 = 3^2 + 4^2;
a(25)=3 since 25^2 = 0^2 + 25^2 = 7^2 + 24^2 = 15^2 + 20^2.
		

Crossrefs

Column k=2 of A255212.

Programs

  • Maple
    with(NumberTheory):
    A063014 := n -> nops(SumOfSquares(n^2));
    seq(A063014(n), n = 0 .. 100); # Felix Huber, Jun 01 2024

Formula

a(0) = 1; a(n) = A046080(n) + 1 for n > 0. [amended by Georg Fischer, Jan 25 2020]
a(n) = A000161(n^2). - Christian Krause, Dec 08 2022

A224921 Number of Pythagorean triples (a, b, c) with a^2 + b^2 = c^2 and 0 < a < b < c < n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 8, 9, 9, 9, 10, 11, 11, 11, 11, 12, 13, 13, 14, 14, 15, 16, 17, 17, 17, 17, 18, 18, 18, 18, 18, 20, 21, 22, 23, 23, 24, 24, 24, 25, 25, 26, 27, 27, 27, 27, 31, 31, 31, 32, 32, 33, 33, 33
Offset: 1

Views

Author

Reiner Moewald, Apr 19 2013

Keywords

Comments

a(n+1) > a(n) iff n is in A009003. - Benoit Cloitre, Dec 08 2021

Crossrefs

Cf. A156685. Essentially partial sums of A046080.
Cf. A009003.

Programs

  • Maple
    a046080:= proc(n) local F,t;
      F:= select(t -> t[1] mod 4 = 1, ifactors(n)[2]);
      1/2*(mul(2*t[2]+1, t=F)-1)
    end proc:
    ListTools:-PartialSums(map(a046080, [$0..100])); # Robert Israel, Jul 18 2016
  • Mathematica
    b[0] = b[1] = 0; b[n_] := With[{fi = Select[FactorInteger[n], Mod[#[[1]], 4] == 1&][[All, 2]]}, (Times @@ (2*fi + 1) - 1)/2];
    Table[b[n], {n, 0, 100}] // Accumulate (* Jean-François Alcover, Feb 27 2019 *)
  • PARI
    a(n)=sum(a=1,n-3,sum(b=a+1,sqrtint((n-1)^2-a^2), issquare(a^2+b^2))) \\ Charles R Greathouse IV, Apr 29 2013

A055525 Shortest other side of a Pythagorean triangle having n as length of one of the three sides.

Original entry on oeis.org

4, 3, 3, 8, 24, 6, 12, 6, 60, 5, 5, 48, 8, 12, 8, 24, 180, 12, 20, 120, 264, 7, 7, 10, 36, 21, 20, 16, 480, 24, 44, 16, 12, 15, 12, 360, 15, 9, 9, 40, 924, 33, 24, 528, 1104, 14, 168, 14, 24, 20, 28, 72, 33, 33, 76, 40, 1740, 11, 11, 960, 16, 48, 16, 88, 2244, 32, 92, 24
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{a, c, k = 1, n2 = n^2}, While[ If[ k > n, !IntegerQ[c = Sqrt[n2 + k^2]], !IntegerQ[c = Sqrt[n2 + k^2]] && !IntegerQ[a = Sqrt[n2 - k^2]]], k++; If[k == n, k++]]; If[ IntegerQ@ c, k, Sqrt[n2 - a^2]]]; (* Robert G. Wilson v, Feb 23 2024 *)

Formula

From Robert G. Wilson v, Feb 23 2024: (Start)
sqrt(2*(n-1)) < a(n) < n^2/2.
If n = k*m, then a(n) <= k*a(m). (End)

A055522 Largest area of a Pythagorean triangle with n as length of one of the three sides (in fact as a leg).

Original entry on oeis.org

6, 6, 30, 24, 84, 60, 180, 120, 330, 210, 546, 336, 840, 504, 1224, 720, 1710, 990, 2310, 1320, 3036, 1716, 3900, 2184, 4914, 2730, 6090, 3360, 7440, 4080, 8976, 4896, 10710, 5814, 12654, 6840, 14820, 7980, 17220, 9240, 19866, 10626, 22770, 12144, 25944
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Maple
    seq(piecewise(n mod 2 = 0,n*(n^2-4)/8,n*(n^2-1)/4),n=3..60); # C. Ronaldo
  • Mathematica
    Table[n*(3*(n^2 - 2) - (n^2 + 2)*(-1)^n)/16, {n, 3, 50}] (* Wesley Ivan Hurt, Apr 27 2017 *)

Formula

a(n) = n*A055523(n)/2.
a(2k) = k*(k+1)*(k-1), a(2k+1) = k*(k+1)*(2k+1).
O.g.f.: 6*x^3*(x+1+x^2)/((1-x)^4*(1+x)^4). a(2k+1)=A055112(k). a(2k)=A007531(k+1). [R. J. Mathar, Aug 06 2008]
a(n) = n*(3*(n^2-2)-(n^2+2)*(-1)^n)/16. - Luce ETIENNE, Jul 17 2015

A055526 Shortest hypotenuse of a Pythagorean triangle with n as length of a leg.

Original entry on oeis.org

5, 5, 13, 10, 25, 10, 15, 26, 61, 13, 85, 50, 17, 20, 145, 30, 181, 25, 29, 122, 265, 25, 65, 170, 45, 35, 421, 34, 481, 40, 55, 290, 37, 39, 685, 362, 65, 41, 841, 58, 925, 55, 51, 530, 1105, 50, 175, 130, 85, 65, 1405, 90, 73, 65, 95, 842, 1741, 61, 1861, 962, 65
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Comments

Smallest k>n such that the squarefree part of k+n equals the squarefree part of k-n - Benoit Cloitre, May 26 2002

Crossrefs

Programs

  • Mathematica
    core[n_] := core[n] = Times @@ Map[#[[1]]^Mod[#[[2]], 2] &, FactorInteger[n]];
    A055526[n_] := Block[{k = n}, While[core[++k+n] != core[k-n]]; k];
    Array[A055526, 100, 3] (* Paolo Xausa, Feb 29 2024 *)
  • PARI
    for(n=3,105,s=n+1; while(abs(core(s+n)-core(s-n))>0,s++); print1(s,","))

Formula

a(n) = sqrt(n^2+A055527(n)^2).

A247588 Number of integer-sided acute triangles with largest side n.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 13, 15, 17, 21, 25, 27, 31, 34, 39, 43, 48, 52, 56, 63, 67, 73, 80, 84, 90, 96, 104, 111, 117, 126, 132, 140, 147, 154, 165, 172, 183, 189, 198, 210, 219, 229, 237, 247, 260, 270, 282, 292, 302
Offset: 1

Views

Author

Vladimir Letsko, Sep 20 2014

Keywords

Examples

			a(3) = 3 because there are 3 integer-sided acute triangles with largest side 3: (1,3,3); (2,3,3); (3,3,3).
		

Crossrefs

Programs

  • Maple
    tr_a:=proc(n) local a,b,t,d;t:=0:
    for a to n do
    for b from max(a,n+1-a) to n do
    d:=a^2+b^2-n^2:
    if d>0 then t:=t+1 fi
    od od;
    t; end;
  • Mathematica
    a[ n_] := Length @ FindInstance[ n >= b >= a >= 1 && n < b + a && n^2 < b^2 + a^2, {a, b}, Integers, 10^9]; (* Michael Somos, May 24 2015 *)
  • PARI
    a(n) = sum(j=0, n*(1 - sqrt(2)/2), n - j - floor(sqrt(2*j*n - j^2))); \\ Michel Marcus, Oct 07 2014
    
  • PARI
    {a(n) = sum(j=0, n - sqrtint(n*n\2) - 1, n - j - sqrtint(2*j*n - j*j))}; /* Michael Somos, May 24 2015 */

Formula

a(n) = Sum_{j=0..floor(n*(1 - sqrt(2)/2))} (n - j - floor(sqrt(2*j*n - j^2))). - Anton Nikonov, Oct 06 2014
a(n) = (1/8)*(-4*ceiling((n - 1)/sqrt(2)) + 4*n^2 - A000328(n) + 1), n > 1. - Mats Granvik, May 23 2015

A054435 Smallest area of a Pythagorean triangle with n as length of one of the three sides.

Original entry on oeis.org

6, 6, 6, 24, 84, 24, 54, 24, 330, 30, 30, 336, 54, 96, 60, 216, 1710, 96, 210, 1320, 3036, 84, 84, 120, 486, 294, 210, 216, 7440, 384, 726, 240, 210, 270, 210, 6840, 270, 180, 180, 840, 19866, 726, 486, 12144, 25944, 336, 4116, 336, 540, 480, 630, 1944, 726
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

A054436 Smallest area of a Pythagorean triangle with n as length of a leg.

Original entry on oeis.org

6, 6, 30, 24, 84, 24, 54, 120, 330, 30, 546, 336, 60, 96, 1224, 216, 1710, 150, 210, 1320, 3036, 84, 750, 2184, 486, 294, 6090, 240, 7440, 384, 726, 4896, 210, 270, 12654, 6840, 1014, 180, 17220, 840, 19866, 726, 540, 12144, 25944, 336, 4116, 3000, 1734, 1014
Offset: 3

Views

Author

Henry Bottomley, May 22 2000

Keywords

Crossrefs

Programs

  • Maple
    readlib(issqr): for a from 3 to 80 do for b from 1 by 1 while not issqr(a^2+b^2) do od: printf("%d, ",a*b/2) od: # C. Ronaldo
  • Mathematica
    a[n_] := For[k = 1, True, k++, If[IntegerQ[Sqrt[n^2+k^2]], Return[n k/2]]];
    a /@ Range[3, 100] (* Jean-François Alcover, Feb 14 2020 *)

Formula

a(n) = n*A055527(n)/2.

A181786 Number of inequivalent solutions to n^2 = a^2 + b^2 + c^2 with positive a, b, c.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 3, 0, 2, 3, 3, 0, 6, 2, 3, 1, 2, 1, 8, 1, 3, 3, 4, 0, 10, 2, 5, 3, 4, 3, 8, 0, 5, 6, 6, 2, 11, 3, 6, 1, 8, 2, 12, 1, 6, 8, 8, 1, 15, 3, 8, 3, 7, 4, 20, 0, 6, 10, 9, 2, 16, 5, 9, 3, 9, 4, 15, 3, 15, 8, 10, 0, 22, 5, 11, 6, 9, 6, 18, 2, 11, 11, 14, 3, 21, 6, 13, 1, 12, 8, 31, 2
Offset: 0

Views

Author

T. D. Noe, Nov 12 2010

Keywords

Comments

Note that a(n)=0 for n=0 and the n in A094958.
Also note that a(2n)=a(n), e.g., a(1000)=a(500)=a(250)=a(125)=14. - Zak Seidov, Mar 02 2012
a(n) is the number of distinct parallelepipeds each one having integer diagonal n and integer sides. - César Eliud Lozada, Oct 26 2014

Crossrefs

Programs

  • Mathematica
    nn=100; t=Table[0,{nn}]; Do[n=Sqrt[a^2+b^2+c^2]; If[n<=nn && IntegerQ[n], t[[n]]++], {a,nn}, {b,a,nn}, {c,b,nn}]; Prepend[t,0]
Previous Showing 21-30 of 55 results. Next