cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A078177 Composite numbers with an integer arithmetic mean of all prime factors.

Original entry on oeis.org

4, 8, 9, 15, 16, 20, 21, 25, 27, 32, 33, 35, 39, 42, 44, 49, 50, 51, 55, 57, 60, 64, 65, 68, 69, 77, 78, 81, 85, 87, 91, 92, 93, 95, 105, 110, 111, 112, 114, 115, 116, 119, 121, 123, 125, 128, 129, 133, 140, 141, 143, 145, 155, 156, 159, 161, 164, 169, 170, 177, 180
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 20 2002

Keywords

Comments

That is, composite numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is an integer.

Examples

			60 = 2*2*3*5: (2+2+3+5)/4 = 3, therefore 60 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200], CompositeQ[#] && IntegerQ[Mean[Flatten[Table[#[[1]], #[[2]]]& /@ FactorInteger[#]]]]&] (* Jean-François Alcover, Aug 03 2018 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, my(f = factor(n)); if (! (sum(k=1, #f~, f[k,1]*f[k,2]) % vecsum(f[,2])), print1(n, ", ")););} \\ Michel Marcus, Feb 22 2016

Formula

A001414(a(n)) == 0 modulo A001222(a(n)).

Extensions

Edited by N. J. A. Sloane, May 30 2008 at the suggestion of R. J. Mathar

A046348 Composite palindromes divisible by the sum of their prime factors (counted with multiplicity).

Original entry on oeis.org

4, 646, 2772, 5445, 8778, 30303, 48384, 50505, 54145, 63336, 77077, 117711, 219912, 234432, 239932, 255552, 272272, 294492, 535535, 585585, 636636, 717717, 825528, 888888, 951159, 999999, 1103011, 1112111, 1345431, 2248422, 2267622
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1998

Keywords

Examples

			a(2)=646 :  2*17*19 -> 2 + 17 + 19 = 38 and 646 / 38 = 17.
		

Crossrefs

Programs

  • Mathematica
    t={}; Do[If[!PrimeQ[n]&&Reverse[x=IntegerDigits[n]]==x&&IntegerQ[n/Total[Times@@@FactorInteger[n]]],AppendTo[t,n]],{n,4,2.5*10^6}]; t (* Jayanta Basu, Jun 04 2013 *)
    cpdQ[n_]:=CompositeQ[n]&&PalindromeQ[n]&&Divisible[n,Total[ Flatten[ Table[ #[[1]],#[[2]]]&/@FactorInteger[n]]]]; Select[Range[23*10^5],cpdQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 01 2018 *)
  • PARI
    See PARI link.

A352989 Composites k such that the k-th triangular number is divisible by the integer log of k.

Original entry on oeis.org

8, 15, 16, 27, 44, 54, 72, 84, 90, 95, 105, 125, 143, 150, 180, 195, 231, 256, 264, 287, 288, 308, 315, 319, 328, 351, 390, 423, 440, 483, 495, 512, 528, 540, 558, 559, 560, 576, 588, 608, 624, 627, 645, 648, 650, 728, 800, 805, 819, 840, 855, 870, 884, 896, 897, 924, 935, 945, 960, 975, 987
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Apr 13 2022

Keywords

Comments

Composites k such that A000217(k) is divisible by A001414(k).
Contains all odd members of A046346, and in particular p^(p^k) if p is an odd prime and k >= 1.

Examples

			a(5) = 44 = 2*2*11 is a term because it is composite and A000217(44) = 44*45/2 = 990 is divisible by 2+2+11 = 15.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t; not isprime(n) and (n*(n+1)/2/add(t[1]*t[2],t=ifactors(n)[2]))::integer end proc:
    select(filter, [$4..1000]);
  • Mathematica
    Select[Range[1000], CompositeQ[#] && Divisible[#*(# + 1)/2, Plus @@ Times @@@ FactorInteger[#]] &] (* Amiram Eldar, Apr 13 2022 *)

A036345 Divisible by its 'even' sum of prime factors (counted with multiplicity).

Original entry on oeis.org

2, 4, 16, 30, 60, 70, 72, 84, 220, 240, 256, 286, 288, 308, 378, 440, 450, 476, 528, 540, 560, 576, 594, 624, 646, 648, 728, 800, 884, 900, 960, 1040, 1056, 1080, 1160, 1170, 1248, 1276, 1404, 1456, 1496, 1530, 1748, 1776, 1798, 1824, 1976, 2322, 2408, 2464
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Examples

			646 = 2*17*19 so the sum of prime factors (with multiplicity) is 2+17+19 = 38 which is even and a divisor of 646 so 646 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    dspfQ[n_]:=Module[{spf=Total[Times@@@FactorInteger[n]]},EvenQ[spf] && Divisible[n,spf]]; Select[Range[4,2500,2],dspfQ] (* Harvey P. Dale, Oct 06 2011 *)
  • PARI
    is(n) = my(f = factor(n), s = sum(i = 1, #f~, f[i, 1] * f[i, 2])); s > 0 && s % 2 == 0 && n % s == 0 \\ David A. Corneth, Feb 07 2019

Extensions

Offset corrected and a(1) = 2 added by Thomas Ordowski, Feb 07 2019

A036346 Composites n such that A001414(n) is odd and divides n.

Original entry on oeis.org

27, 105, 150, 180, 231, 588, 627, 650, 805, 840, 897, 945, 1008, 1100, 1122, 1134, 1581, 1755, 2079, 2106, 2625, 2660, 2800, 2958, 2964, 2967, 2970, 3055, 3125, 3150, 3432, 3564, 3750, 3861, 4000, 4070, 4185, 4500, 4543, 4760, 4800, 5292, 5304, 5355
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Examples

			5445 = 3*3*5*11*11 -> sum = 3+3+5+11+11 = 33 (=odd) so 33 divides 5445 exactly.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F,s;
      if isprime(n) then return false fi;
      F:=  ifactors(n)[2];
      s:= add(t[1]*t[2],t=F);
      s::odd and ( n mod s = 0)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Jul 15 2020
  • Mathematica
    With[{s = Map[{#, Total[Times @@@ FactorInteger[#]]} &, Select[Range[4, 6000], CompositeQ]]}, Select[s, Mod[#1, #2] == 0 && OddQ[#2] & @@ # &][[All, 1]] ] (* Michael De Vlieger, Jul 15 2020 *)

Extensions

Name and offset corrected by Robert Israel, Jul 15 2020

A134335 Numbers such that the arithmetic mean of their prime factors (counted with multiplicity) is an integer, but not a prime.

Original entry on oeis.org

15, 35, 39, 42, 50, 51, 55, 65, 77, 78, 87, 91, 92, 95, 110, 111, 114, 115, 119, 123, 140, 141, 143, 155, 159, 161, 164, 170, 183, 185, 186, 187, 189, 201, 203, 204, 209, 215, 219, 221, 222, 225, 230, 235, 236, 242, 247, 258, 259, 264, 267, 284, 285, 287, 290
Offset: 1

Views

Author

Hieronymus Fischer, Oct 23 2007

Keywords

Examples

			a(1) = 15, since 15 = 3*5 and (3+5)/2 = 4 is not prime.
a(5) = 50, since 50 = 2*5*5 and (2+5+5)/3 = 4 is not prime.
		

Crossrefs

Programs

  • Mathematica
    fp[{a_,b_}]:=a*b;s={};Do[If[q=Total[fp/@FactorInteger[n]]/Total[Last/@FactorInteger[n]];IntegerQ[q]&&!PrimeQ[q],AppendTo[s,n]],{n,2,290}];s (* James C. McMahon, Apr 05 2025 *)

Extensions

Definition clarified by the author, May 06 2013

A175729 Numbers n such that the sum of the prime factors with multiplicity of n divides n-1.

Original entry on oeis.org

6, 21, 45, 52, 225, 301, 344, 441, 697, 1225, 1333, 1540, 1625, 1680, 1695, 1909, 2025, 2041, 2145, 2295, 2466, 2601, 2926, 3051, 3104, 3146, 3400, 3510, 3738, 3888, 3901, 4030, 4186, 4251, 4375, 4641, 4675, 4693, 4930, 5005, 5085, 5244, 5425, 6025, 6105
Offset: 1

Views

Author

K. T. Lee (7x3(AT)21cn.com), Aug 23 2010

Keywords

Examples

			For example, 21=7x3, 7+3=10 which divides 21-1=20.
		

Crossrefs

Disjoint from A130871 and A046346.
Cf. A001414.
Contains A164643.

Programs

  • Magma
    [k:k in [2..6200]| IsIntegral((k-1)/( &+[m[1]*m[2]: m in Factorization(k)]))]; // Marius A. Burtea, Sep 16 2019
    
  • Maple
    A001414 := proc(n) ifactors(n)[2] ; add( op(1,p)*op(2,p),p=%) ; end proc:
    isA175729 := proc(n) if (n-1) mod A001414(n) = 0 then true; else false; end if; end proc:
    for n from 2 to 10000 do if isA175729(n) then printf("%d,",n) ; end if; end do:
    # R. J. Mathar, Aug 24 2010
  • Mathematica
    fQ[n_] := Mod[n - 1, Plus @@ Flatten[ Table[ #1, {#2}] & @@@ FactorInteger@ n]] == 0; Select[ Range@ 6174, fQ] (* Robert G. Wilson v, Aug 25 2010 *)
  • Python
    from sympy import factorint
    def ok(n): return n>1 and (n-1)%sum(p*e for p, e in factorint(n).items())==0
    print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Sep 30 2022

Formula

{n : A001414(n) | (n-1)}. [R. J. Mathar, Aug 24 2010]

Extensions

Extended by R. J. Mathar and Robert G. Wilson v, Aug 24 2010

A308643 Odd squarefree composite numbers k, divisible by the sum of their prime factors, sopfr (A001414).

Original entry on oeis.org

105, 231, 627, 805, 897, 1581, 2967, 3055, 4543, 5487, 6461, 6745, 7881, 9717, 10707, 14231, 15015, 16377, 21091, 26331, 29607, 33495, 33901, 33915, 35905, 37411, 38843, 40587, 42211, 45885, 49335, 50505, 51051, 53295, 55581, 60297
Offset: 1

Views

Author

David James Sycamore, Jun 13 2019

Keywords

Comments

Every term has an odd number of prime divisors (A001221(k) is odd), since if not, sopfr(k) would be even, and so not divide k, which is odd.
Some Carmichael numbers appear in this sequence, the first of which is 3240392401.
From Robert Israel, Jul 05 2019: (Start)
Includes p*q*r if p and q are distinct odd primes and r=(p-1)*(q-1)-1 is prime. Dickson's conjecture implies that there are infinitely many such terms for each odd prime p. Thus for p=3, q is in A063908 (except 3), for p=5, q is in A156300 (except 2), and for p=7, q is in A153135 (except 2). (End)

Examples

			105=3*5*7; sum of prime factors = 15 and 105 = 7*15, so 105 is a term.
		

Crossrefs

Programs

  • Magma
    [k:k in [2*d+1: d in [1..35000]]|IsSquarefree(k) and not IsPrime(k) and k mod &+PrimeDivisors(k) eq 0]; // Marius A. Burtea, Jun 19 2019
  • Maple
    with(NumberTheory);
    N := 500;
    for n from 2 to N do
    S := PrimeFactors(n);
    X := add(S);
    if IsSquareFree(n) and not mod(n, 2) = 0 and not isprime(n) and mod(n, X) = 0 then print(n);
    end if:
    end do:
  • Mathematica
    aQ[n_] := Module[{f = FactorInteger[n]}, p=f[[;;,1]]; e=f[[;;,2]]; Length[e] > 1 && Max[e]==1 && Divisible[n, Plus@@(p^e)]]; Select[Range[1, 61000, 2], aQ] (* Amiram Eldar, Jul 04 2019 *)

A370354 Composite numbers k that share a factor with sopfr(k), the sum of the primes dividing k, with repetition.

Original entry on oeis.org

4, 8, 9, 16, 18, 24, 25, 27, 30, 32, 36, 42, 49, 50, 60, 64, 66, 70, 72, 78, 81, 84, 98, 100, 102, 105, 110, 114, 120, 121, 125, 126, 128, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 169, 170, 174, 180, 182, 186, 190, 192, 195, 196, 200, 204, 216, 220, 222, 228, 230, 231, 234, 238, 240
Offset: 1

Views

Author

Scott R. Shannon, May 06 2024

Keywords

Comments

All prime powers, see A246547, are terms.

Examples

			18 is a term as 18 = 2 * 3 * 3, and soprf(18) = 2 + 3 + 3 = 8, which shares a factor with 18.
		

Crossrefs

Programs

  • Mathematica
    fn[{a_,b_}]:=a*b;Select[Range[240],CompositeQ[#]&&ContainsAny[First/@FactorInteger[#],First/@FactorInteger[ Total[fn/@FactorInteger[#]]]]&] (* James C. McMahon, May 06 2024 *)

A091340 Amicable numbers with property that each member m of the corresponding amicable pair is divisible by sopfr(m) (the sum of prime factors with repetition, A001414).

Original entry on oeis.org

821921625, 988676775, 4024942087978, 4179223134422, 100733767393275, 110452715806725
Offset: 1

Views

Author

Sven Simon, Dec 31 2003

Keywords

Comments

Both members of the amicable pair appear in the sequence.
Conjecture: sequence is finite (even though there are many known amicable numbers - about 8*10^7 currently).
Sergei Chernykh and the teams @Boinc found a new pair with their still ongoing search in the 21-digit range, 109297847965212832096 with sopfr(m)=118618 and 109392896505354817184 with sopfr(m)=39152. - Sven Simon, Sep 19 2020

Examples

			a(1): 821921625 = 3^2*5^3*7*29*59*61, sopfr(n) = 177 = 3*59.
a(2): 988676775 = 3^2*5^2*71*199*311, sopfr(n) = 597 = 3*199.
		

Crossrefs

Cf. A001414, A046346, A063990, A259180 (amicable pairs).
Cf. A267076 (amicable pairs that have the same sopfr).
Previous Showing 11-20 of 23 results. Next