cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A256690 From fourth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fourth power is zeta function; sequence gives numerator of b(n).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 15, 5, 1, 1, 5, 1, 1, 1, 195, 1, 5, 1, 5, 1, 1, 1, 15, 5, 1, 15, 5, 1, 1, 1, 663, 1, 1, 1, 25, 1, 1, 1, 15, 1, 1, 1, 5, 5, 1, 1, 195, 5, 5, 1, 5, 1, 15, 1, 15, 1, 1, 1, 5, 1, 1, 5, 4641, 1, 1, 1, 5, 1, 1, 1, 75, 1, 1, 5, 5, 1, 1, 1, 195, 195, 1, 1, 5, 1, 1, 1, 15, 1, 5, 1, 5, 1, 1, 1, 663, 1, 5, 5, 25
Offset: 1

Views

Author

Wolfgang Hintze, Apr 09 2015

Keywords

Comments

Dirichlet g.f. of A256690(n)/A256691(n) is (zeta(x))^(1/4).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

Examples

			b(1), b(2), ... = 1, 1/4, 1/4, 5/32, 1/4, 1/16, 1/4, 15/128, 5/32, 1/16, 1/4, 5/128, 1/4, 1/16, 1/16, 195/2048, ...
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 4;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1,#1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256690 *)
    den = Denominator[t] (* A256691 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(1/4))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 4;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A256690(j)/A256691(j) ~ n / (Gamma(1/4) * log(n)^(3/4)) * (1 + (3*(1 - gamma/4))/(4*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

A256692 From fifth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is zeta function; sequence gives numerator of b(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 11, 3, 1, 1, 3, 1, 1, 1, 44, 1, 3, 1, 3, 1, 1, 1, 11, 3, 1, 11, 3, 1, 1, 1, 924, 1, 1, 1, 9, 1, 1, 1, 11, 1, 1, 1, 3, 3, 1, 1, 44, 3, 3, 1, 3, 1, 11, 1, 11, 1, 1, 1, 3, 1, 1, 3, 4004, 1, 1, 1, 3, 1, 1, 1, 33, 1, 1, 3, 3, 1, 1, 1, 44, 44, 1, 1, 3, 1, 1, 1, 11, 1, 3, 1, 3, 1, 1, 1, 924, 1, 3, 3, 9
Offset: 1

Views

Author

Wolfgang Hintze, Apr 08 2015

Keywords

Comments

Dirichlet g.f. of A256692(n)/A256693(n) is (zeta(x))^(1/5).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...

Examples

			b(1), b(2), ... =
1, 1/5, 1/5, 3/25, 1/5, 1/25, 1/5, 11/125, 3/25, 1/25, 1/5, 3/125, 1/5, 1/25, 1/25, 44/625, 1/5, 3/125, 1/5, 3/125, 1/25, 1/25, 1/5, 11/625
		

Crossrefs

Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 5;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A256692 *)
    den = Denominator[t] (* A256693 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(1/5))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 5;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A256692(j)/A256693(j) ~ n / (Gamma(1/5) * log(n)^(4/5)) * (1 + (4*(1 - gamma/5))/(5*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 04 2025

A257098 From square root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose square is 1/zeta; sequence gives numerator of b(n).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -5, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -7, 1, 1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 5, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, -21, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 5, -5, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 7, -1, 1, 1, 1
Offset: 1

Views

Author

Wolfgang Hintze, Apr 16 2015

Keywords

Comments

Dirichlet g.f. of b(n) = A257098(n)/A046644(n) is (zeta(x))^(-1/2).
Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/2).
Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...
The sequence of rationals a(n)/A046644(n) is the Moebius transform of A046643/A046644 which is multiplicative. This sequence is then also multiplicative. - Andrew Howroyd, Aug 08 2018

Crossrefs

Cf. family zeta^(-1/k): A257098/A046644 (k=2), A257099/A256689 (k=3), A257100/A256691 (k=4), A257101/A256693 (k=5).
Cf. family zeta^(+1/k): A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 2;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}];
    sol = Solve[Join[{b[1]==1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A257098 *)
    den = Denominator[t] (* A046644 *)
  • PARI
    \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
    DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dAndrew Howroyd, Aug 08 2018
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 2;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257098(j)/A046644(j) ~ -n / (2 * sqrt(Pi) * log(n)^(3/2)) * (1 + 3*(gamma/2 + 1)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 05 2025

A317934 Multiplicative with a(p^n) = 2^A011371(n); denominators for certain "Dirichlet Square Roots" sequences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 8, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 8, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 16, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 8, 8, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2, 4, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

a(n) is the denominator of certain rational valued sequences f(n), that have been defined as f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, dA034444 and A037445.
Many of the same observations as given in A046644 apply also here. Note that A011371 shares with A005187 the property that A011371(x+y) <= A011371(x) + A011371(y), with equivalence attained only when A004198(x,y) = 0, and also the property that A011371(2^(k+1)) = 1 + 2*A011371(2^k).
The following list gives such pairs num(n), b(n) for which b(n) is Dirichlet convolution of num(n)/a(n).
Numerators Dirichlet convolution of numerator(n)/a(n) yields
------- -----------
Expansion of Dirichlet g.f. Product_{prime} 1/(1 - 2/p^s)^(1/2) is A046643/A317934. - Vaclav Kotesovec, May 08 2025

Crossrefs

Cf. A317933, A317940, A317941 (numerator-sequences).
Cf. also A046644, A299150, A299152, A317832, A317932, A317926 (for denominator sequences of other similar constructions).

Programs

  • PARI
    A011371(n) = (n - hammingweight(n));
    A317934(n) = factorback(apply(e -> 2^A011371(e),factor(n)[,2]));
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-2*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 07 2025
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = 2^A317946(n).
a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (b(n) - Sum_{d|n, d>1, d 1, where b is A034444, A037445 or A046644 for example.
Sum_{k=1..n} A046643(k)/a(k) ~ n * sqrt(A167864*log(n)/(Pi*log(2))) * (1 + (4*(gamma - 1) + 5*log(2) - 4*A347195)/(8*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 08 2025

A299151 Numerators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 7, 8, 14, 32, 121, 126, 248, 512, 1003, 2048, 4064, 8176, 130539, 32768, 65382, 131072, 261868, 524224, 1048064, 2097152, 4193131, 8388576, 16775168, 33554180, 67104688, 134217728, 268426672, 536870912, 8589802359, 2147482624, 4294934528, 8589934336, 17179801257, 34359738368, 68719345664, 137438949376, 274877643724, 549755813888
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Comments

Numerators of rational valued sequence f whose Dirichlet convolution with itself yields function g(n) = A000079(n-1) = 2^(n-1). - Antti Karttunen, Aug 10 2018

Examples

			Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Numerator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
  • PARI
    A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(dA299151perA299152(d)*A299151perA299152(n/d),0)))/2);
    A299151(n) = numerator(A299151perA299152(n));

Extensions

More terms from Antti Karttunen, Jul 29 2018

A317925 Numerators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).

Original entry on oeis.org

1, 1, 1, 7, 2, 1, 3, 25, 5, 1, 5, 7, 6, 3, 2, 363, 8, 5, 9, 7, 3, 5, 11, 25, 8, 3, 13, 21, 14, 1, 15, 1335, 5, 4, 6, 35, 18, 9, 6, 25, 20, 3, 21, 35, 5, 11, 23, 363, 33, 4, 8, 21, 26, 13, 10, 75, 9, 7, 29, 7, 30, 15, 15, 9923, 12, 5, 33, 7, 11, 3, 35, 125, 36, 9, 8, 63, 15, 3, 39, 363, 139, 10, 41, 21, 16, 21, 14, 125, 44, 5, 18, 77, 15, 23
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Crossrefs

Cf. A000010, A317926 (denominators).
Cf. also A046643, A317831.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Numerator @ Array[f, 100] (* Amiram Eldar, Dec 12 2022 *)
  • PARI
    A317925perA317926(n) = if(1==n,n,(eulerphi(n)-sumdiv(n,d,if((d>1)&&(dA317925perA317926(d)*A317925perA317926(n/d),0)))/2);
    A317925(n) = numerator(A317925perA317926(n));
    
  • PARI
    \\ Memoized implementation:
    memo = Map();
    A317925perA317926(n) = if(1==n,n,if(mapisdefined(memo,n),mapget(memo,n),my(v = (eulerphi(n)-sumdiv(n,d,if((d>1)&&(dA317925perA317926(d)*A317925perA317926(n/d),0)))/2); mapput(memo,n,v); (v)));
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1-X)/(1-p*X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A317925(k) / A317926(k) ~ Pi^(-3/2) * n^2 * sqrt(3/(2*log(n))) * (1 + (1/2 - gamma/2 + 3*zeta'(2)/Pi^2) / (2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 10 2025

A257099 From third root of the inverse of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose cube is 1/zeta; sequence gives numerator of b(n).

Original entry on oeis.org

1, -1, -1, -1, -1, 1, -1, -5, -1, 1, -1, 1, -1, 1, 1, -10, -1, 1, -1, 1, 1, 1, -1, 5, -1, 1, -5, 1, -1, -1, -1, -22, 1, 1, 1, 1, -1, 1, 1, 5, -1, -1, -1, 1, 1, 1, -1, 10, -1, 1, 1, 1, -1, 5, 1, 5, 1, 1, -1, -1, -1, 1, 1, -154, 1, -1, -1, 1, 1, -1, -1, 5, -1, 1, 1, 1, 1, -1, -1, 10, -10, 1, -1, -1, 1, 1, 1, 5, -1, -1, 1, 1, 1, 1, 1, 22, -1, 1, 1, 1
Offset: 1

Views

Author

Wolfgang Hintze, Apr 16 2015

Keywords

Comments

Dirichlet g.f. of b(n) = a(n)/A256689(n) is (zeta(x))^(-1/3).
Denominator is the same as for Dirichlet g.f. (zeta(x))^(+1/3).
Formula holds for general Dirichlet g.f. zeta(x)^(-1/k) with k = 1, 2, ...

Crossrefs

Cf. family zeta^(-1/k): A257098/A046644 (k=2), A257099/A256689 (k=3), A257100/A256691 (k=4), A257101/A256693 (k=5).
Cf. family zeta^(+1/k): A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).

Programs

  • Mathematica
    k = 3;
    c[1, n_] = b[n];
    c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
    nn = 100; eqs = Table[c[k, n]==MoebiusMu[n], {n, 1, nn}];
    sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
    t = Table[b[n], {n, 1, nn}] /. sol[[1]];
    num = Numerator[t] (* A257099 *)
    den = Denominator[t] (* A256689 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(-1/3))[n]), ", ")) \\ Vaclav Kotesovec, May 04 2025

Formula

with k = 3;
zeta(x)^(-1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = mu(n) for b(m);
a(n) = numerator(b(n)).
Sum_{j=1..n} A257099(j)/A256689(j) ~ n / (Gamma(-1/3) * log(n)^(4/3)) * (1 + 4*(gamma/3 + 1)/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function. - Vaclav Kotesovec, May 05 2025

A299152 Denominators of the positive solution to 2^(n-1) = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 2, 7/2, 8, 14, 32, 121/2, 126, 248, 512, 1003, 2048, 4064, 8176, 130539/8, 32768.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[2^(n-1)==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
  • PARI
    up_to = 65537;
    prepareA299151perA299152(up_to) = { my(vmemo = vector(up_to)); for(n=1,up_to, vmemo[n] = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(dA299152 = prepareA299151perA299152(up_to);
    A299151perA299152(n) = v299151perA299152[n];
    \\ Or without memoization as:
    A299151perA299152(n) = if(1==n,n,(2^(n-1)-sumdiv(n,d,if((d>1)&&(dA299151perA299152(d)*A299151perA299152(n/d),0)))/2);
    A299152(n) = denominator(A299151perA299152(n)); \\ Antti Karttunen, Jul 29 2018

Extensions

More terms from Antti Karttunen, Jul 29 2018

A299119 Positive solution to 2^(n-1) = (1/n) * Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 2, 6, 14, 40, 84, 224, 484, 1134, 2480, 5632, 12036, 26624, 56896, 122640, 261078, 557056, 1176876, 2490368, 5237360, 11008704, 23057408, 48234496, 100635144, 209714400, 436154368, 905962860, 1878931264, 3892314112, 8052800160, 16642998272, 34359209436
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Comments

For prime p, a(p) = 2^(p-2)*p. - Jon E. Schoenfield, Feb 03 2018

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1, n*2^(n-2)-
           add(a(d)*a(n/d), d=divisors(n) minus {1, n})/2)
        end:
    seq(a(n), n=1..35);  # Alois P. Heinz, Mar 07 2018
  • Mathematica
    nn=50;
    sys=Table[2^(n-1)*n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]

A317933 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A034444 (number of unitary divisors of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 12 2018

Keywords

Comments

Multiplicative because A034444 is.
The first 2^20 terms are positive. Is the sequence nonnegative?
Records seem to be A001790, occurring at A000302 (apart from 4).

Crossrefs

Cf. A001790, A034444, A317934 (denominators).

Programs

  • PARI
    A034444(n) = (2^omega(n));
    A317933perA317934(n) = if(1==n,n,(A034444(n)-sumdiv(n,d,if((d>1)&&(dA317933perA317934(d)*A317933perA317934(n/d),0)))/2);
    A317933(n) = numerator(A317933perA317934(n));
    
  • PARI
    up_to = 65537;
    \\ Faster:
    DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v317933aux = DirSqrt(vector(up_to, n, A034444(n)));
    A317933(n) = numerator(v317933aux[n]);
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A034444(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A317933(k) / A317934(k) ~ sqrt(6)*n/Pi. - Vaclav Kotesovec, May 10 2025
Previous Showing 11-20 of 26 results. Next