cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A135170 Primes equal to a sum c1+c2 of two consecutive composite numbers such that lpf(c1)-spf(c1)+lpf(c2)-spf(c2) from their largest and smallest prime factors is prime.

Original entry on oeis.org

19, 29, 31, 41, 43, 53, 67, 71, 79, 89, 101, 109, 131, 149, 151, 173, 197, 199, 233, 239, 241, 251, 269, 271, 283, 307, 311, 317, 331, 337, 349, 367, 401, 419, 439, 449, 461, 487, 491, 499, 509, 521, 593, 599, 617, 641, 647, 683, 691, 727, 739, 751, 769, 809
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 14 2008

Keywords

Crossrefs

Cf. A111426.

Programs

  • Maple
    A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from A002808(n-1)+1 do if not isprime(a) then RETURN(a) ; fi ; od: fi ; end:
    isA060254 := proc(n) local i,sComp ; if isprime(n) then for i from 1 do sComp := A002808(i)+A002808(i+1) ; if sComp = n then RETURN(i); elif sComp > n then RETURN(-1) ; fi ; od: else -1 ; fi ; end:
    A046665 := proc(n) local a,ifs ; a := 0 ; ifs := seq(op(1, i),i=ifactors(n)[2]) ; max(ifs)-min(ifs) ; end:
    A111426 := proc(n) A046665(A002808(n)) ; end:
    isA135170 := proc(p) local i ; i := isA060254(p) ; if i > 0 then A111426(i) + A111426(i+1) ; isprime(%) ; else false ; fi ; end:
    for n from 1 to 300 do p := ithprime(n) ; if isA135170(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Feb 19 2008

Formula

{A060254(j): A002808(i)+A002808(i+1)=A060254(j) and A111426(i)+A111426(i+1) in A000040}. Subsequence of A060254. - R. J. Mathar, Feb 19 2008

Extensions

Corrected and extended by R. J. Mathar, Feb 19 2008
More precise definition by R. J. Mathar, Sep 17 2009

A381214 a(n) is the difference between the largest and smallest element of the set of bases and exponents (including exponents = 1) in the prime factorization of n.

Original entry on oeis.org

1, 2, 0, 4, 2, 6, 1, 1, 4, 10, 2, 12, 6, 4, 2, 16, 2, 18, 4, 6, 10, 22, 2, 3, 12, 0, 6, 28, 4, 30, 3, 10, 16, 6, 1, 36, 18, 12, 4, 40, 6, 42, 10, 4, 22, 46, 3, 5, 4, 16, 12, 52, 2, 10, 6, 18, 28, 58, 4, 60, 30, 6, 4, 12, 10, 66, 16, 22, 6, 70, 1, 72, 36, 4, 18
Offset: 2

Views

Author

Paolo Xausa, Feb 19 2025

Keywords

Examples

			a(36) = 1 because 36 = 2^2*3^2, the set of these bases and exponents is {2, 3} and 3 - 2 = 1.
a(31500) = 6 because 31500 = 2^2*3^2*5^3*7^1, the set of these bases and exponents is {1, 2, 3, 5, 7} and 7 - 1 = 6.
		

Crossrefs

Cf. A051674 (positions of zeros), A381215 (positions of ones).

Programs

  • Mathematica
    A381214[n_] := Max[#] - Min[#] & [Flatten[FactorInteger[n]]];
    Array[A381214, 100, 2]
  • PARI
    a(n) = my(f=factor(n), s=setunion(Set(f[,1]), Set(f[,2]))); vecmax(s) - vecmin(s); \\ Michel Marcus, Feb 20 2025

Formula

a(n) = A081812(n) - A381212(n).

A089341 Numbers k with lpf(k) < gpf(k) < 2*lpf(k), where lpf = A020639, gpf = A006530.

Original entry on oeis.org

6, 12, 15, 18, 24, 35, 36, 45, 48, 54, 72, 75, 77, 91, 96, 108, 135, 143, 144, 162, 175, 187, 192, 209, 216, 221, 225, 245, 247, 288, 299, 323, 324, 375, 384, 391, 405, 432, 437, 486, 493, 527, 539, 551, 576, 589, 637, 648, 667, 675, 703, 713, 768, 847, 851
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 03 2004

Keywords

Comments

A081306 without prime powers.

Crossrefs

Subsequence of A024619.

Programs

  • Haskell
    a089341 n = a089341_list !! (n-1)
    a089341_list = filter (\x -> a006530 x < 2 * a020639 x) a024619_list
    -- Reinhard Zumkeller, Sep 29 2014
    
  • Mathematica
    q[k_] := Module[{p = FactorInteger[k][[;;, 1]]}, Length[p] > 1 && p[[-1]] < 2*p[[1]]]; Select[Range[1000], q] (* Amiram Eldar, May 16 2025 *)
  • PARI
    isok(k) = if(k == 1, 0, my(p = factor(k)[,1], np = #p);  np > 1 && p[np] < 2*p[1]); \\ Amiram Eldar, May 16 2025

Formula

A046665(a(n)) < A020639(a(n)).

A100573 Smallest difference between distinct prime divisors of n, or 0 if n is a prime power.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 5, 2, 0, 0, 1, 0, 3, 4, 9, 0, 1, 0, 11, 0, 5, 0, 1, 0, 0, 8, 15, 2, 1, 0, 17, 10, 3, 0, 1, 0, 9, 2, 21, 0, 1, 0, 3, 14, 11, 0, 1, 6, 5, 16, 27, 0, 1, 0, 29, 4, 0, 8, 1, 0, 15, 20, 2, 0, 1, 0, 35, 2, 17, 4, 1, 0, 3, 0, 39, 0, 1, 12, 41, 26, 9, 0, 1, 6, 21, 28, 45
Offset: 1

Views

Author

Leroy Quet, Jan 02 2005

Keywords

Examples

			For 30 = 2*3*5, 2 and 3 are separated by only 1, so a(30) = 1.
		

Crossrefs

Cf. also A046665, A297173.

Programs

  • Mathematica
    <Labos Elemer, Jan 05 2005 *)
    Table[Min[Differences[Transpose[FactorInteger[n]][[1]]]],{n,100}]/.\[Infinity]->0 (* Harvey P. Dale, Jul 27 2015 *)
  • PARI
    A100573(n) = if(omega(n)<=1,0,my(ps=factor(n)[,1]); vecmin(vector((#ps)-1,i,ps[i+1]-ps[i]))); \\ Antti Karttunen, Mar 03 2018

Extensions

More terms from Labos Elemer, Jan 05 2005

A120454 a(n) = ceiling(GPF(n)/LPF(n)) where GPF is greatest prime factor, LPF is least prime factor.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 4, 2, 1, 1, 2, 1, 3, 3, 6, 1, 2, 1, 7, 1, 4, 1, 3, 1, 1, 4, 9, 2, 2, 1, 10, 5, 3, 1, 4, 1, 6, 2, 12, 1, 2, 1, 3, 6, 7, 1, 2, 3, 4, 7, 15, 1, 3, 1, 16, 3, 1, 3, 6, 1, 9, 8, 4, 1, 2, 1, 19, 2, 10, 2, 7, 1, 3, 1, 21, 1, 4, 4, 22, 10, 6, 1, 3, 2, 12, 11, 24, 4, 2, 1, 4, 4
Offset: 1

Views

Author

Jonathan Vos Post, Aug 16 2006

Keywords

Comments

Given GPF(n) and LPF(n), the sum is A074320, the difference is A046665 and the product is A066048. a(n) = 1 iff n is p^k iff n is in A000961.

Examples

			a(26) = ceiling(GPF(26)/LPF(26)) = ceiling(13/2) = 7.
		

Crossrefs

Programs

  • Maple
    A120454 := proc(n) local ifs ; if n = 1 then RETURN(1) ; else ifs := ifactors(n)[2] ; RETURN( ceil(op(1,op(-1,ifs))/op(1,op(1,ifs))) ) ; fi ; end ; for n from 1 to 100 do printf("%d, ",A120454(n)) ; od ; # R. J. Mathar, Dec 16 2006
  • Mathematica
    a[n_] := Module[{p = FactorInteger[n][[;;, 1]]}, Ceiling[p[[-1]] / p[[1]]]]; Array[a, 100] (* Amiram Eldar, Oct 24 2024 *)
  • PARI
    A120454(n) = if(1==n,1, my(f = factor(n), lpf = f[1, 1], gpf = f[#f~, 1]); ceil(gpf/lpf)); \\ Antti Karttunen, Sep 06 2018

Formula

a(n) = ceiling(A006530(n)/A020639(n)).
a(n) = A069897(n) + 1 if n is not a power of a prime (A024619), and 1 otherwise. - Amiram Eldar, Oct 24 2024

Extensions

Corrected and extended by R. J. Mathar, Dec 16 2006

A086770 Numbers k such that the difference between the largest and the smallest prime divisor of k equals the number of prime divisors of k (counted with multiplicity).

Original entry on oeis.org

1, 15, 20, 30, 35, 50, 112, 143, 168, 189, 252, 280, 315, 323, 378, 392, 420, 441, 525, 588, 630, 700, 735, 882, 899, 980, 1029, 1050, 1372, 1470, 1750, 1763, 2058, 2450, 2816, 3430, 3599, 3773, 4224, 4802, 5183, 5929, 6336, 7040, 9317, 9504, 9856, 10403
Offset: 1

Views

Author

Jason Earls, Aug 02 2003

Keywords

Examples

			112 is a term because 112 = 2^4*7 with 5 primes dividing it and 7-2=5.
		

Crossrefs

Programs

  • Magma
    f:=func; [1] cat [k:k in [2..10000]| Max(PrimeDivisors(k))-Min(PrimeDivisors(k)) eq f(k)]; // Marius A. Burtea, Dec 16 2019
    
  • Mathematica
    seqQ[1] = True; seqQ[n_] := Plus @@ Last /@ (f = FactorInteger[n]) == f[[-1, 1]] - f[[1, 1]]; Select[Range[10^4], seqQ] (* Amiram Eldar, Dec 16 2019 *)
  • PARI
    print1("1, "); for(k=2,10500,my(f=factor(k));if(bigomega(k)==vecmax(f[, 1])-f[1,1],print1(k,", "))) \\ Hugo Pfoertner, Dec 16 2019

Extensions

Name edited by Hugo Pfoertner, Dec 16 2019

A212332 The difference between the largest and smallest prime factor of n as n runs through the numbers with at least two distinct prime factors.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 3, 4, 9, 1, 11, 5, 3, 8, 15, 2, 1, 17, 10, 3, 5, 9, 2, 21, 1, 3, 14, 11, 1, 6, 5, 16, 27, 3, 29, 4, 8, 9, 15, 20, 5, 1, 35, 2, 17, 4, 11, 3, 39, 5, 12, 41, 26, 9, 3, 6, 21, 28, 45, 14, 1, 5, 8, 3, 15, 11, 4, 51, 1, 9, 34, 5, 17, 18, 27, 10
Offset: 1

Views

Author

Michel Lagneau, Aug 07 2012

Keywords

Comments

a(n) = A100576(n) if A168638(n) contains only two prime distinct divisors.
Nonzero entries of A046665 in the order of appearance. R. J. Mathar, Aug 07 2012

Examples

			a(13) = 3 because A168638(13) = 30 = 2*3*5 and 5-2 = 3.
		

Crossrefs

Programs

  • Maple
    for n from 2 to 200 do
        gpf := A006530(n) ;
        spf := A020639(n) ;
        if gpf <> spf then
            printf("%d,",gpf-spf) ;
        end if;
    end do: # R. J. Mathar, Aug 07 2012

A243981 Minimum range of sets of natural numbers with a product of n.

Original entry on oeis.org

1, 2, 0, 4, 1, 6, 0, 0, 3, 10, 1, 12, 5, 2, 0, 16, 1, 18, 1, 4, 9, 22, 1, 0, 11, 0, 3, 28, 1, 30, 0, 8, 15, 2, 0, 36, 17, 10, 3, 40, 1, 42, 7, 2, 21, 46, 1, 0, 3, 14, 9, 52, 1, 6, 1, 16, 27, 58, 2, 60, 29, 2, 0, 8, 5, 66, 13, 20, 3, 70, 1, 72, 35, 2, 15, 4, 7, 78, 1, 0, 39, 82, 4, 12, 41, 26, 3, 88, 1, 6, 19, 28, 45, 14, 1, 96, 5, 2, 0
Offset: 2

Views

Author

Paul Richards, Nov 11 2014

Keywords

Comments

The minimum difference between the largest and smallest values in the sets of positive integers with a product of n, excluding the singleton set {n}.

Examples

			For 45 the sets are {1,45}, {3,15}, {5,9}, {3,3,5} with differences of 44, 12, 4 and 2 respectively.  2 is the minimum and so a(45) = 2.
		

Crossrefs

Formula

a(n) <= A046665(n) for all composite n, a(p) = p - 1 for primes p. - Charlie Neder, Jan 13 2019
Previous Showing 11-18 of 18 results.